判断有向图是否有环 [No. 75]

要判断一个有向图是否有环,我们可以选择选择BFS, DFS 或者 Topological sorting. 用BFS或者DFS进行判断时,我们主要判断要被访问的node是否已经被访问过,如果被访问过,就有环。利用topological sorting进行判断的时候,就是判断node是否只有一个node和它连接(算法第八行)(按照树的说法,也就是看那个点是否只有一个父节点)。

代码如下(来自wiki):

L ← Empty list that will contain the sorted elements
S ← Set of all nodes with no incoming edges
while S is non-empty do
    remove a node n from S
    insert n into L
    for each node m with an edge e from n to m do
        remove edge e from the graph
        if m has no other incoming edges then
            insert m into S
if graph has edges then
    output error message (graph has at least one cycle)
else 
    output message (proposed topologically sorted order: L)


参考:http://en.wikipedia.org/wiki/Topological_sorting

判断无向图中是否有环可以使用深度优先搜索(DFS)。 具体实现步骤如下: 1. 定义一个 bool 类型的数组 visited[] 来记录每个节点是否被访问过,初始化为 false。 2. 定义一个 int 类型的 prev[] 数组来记录每个节点的前驱节点,初始化为 -1。 3. 从任意一个未被访问过的节点开始进行 DFS 遍历。 4. 在遍历过程中,对于每个节点 u 的邻居节点 v,如果 v 已被访问过且不是 u 的前驱节点,则说明存在环,返回 true。 5. 如果遍历完成后没有找到环,则返回 false。 以下是 C 语言代码实现: ```c #include <stdio.h> #include <stdbool.h> #define MAXN 100 int n; // 图中节点数 bool G[MAXN][MAXN]; // 图的邻接矩阵 bool visited[MAXN]; // 节点访问标记 int prev[MAXN]; // 前驱节点 bool dfs(int u, int p) { visited[u] = true; prev[u] = p; for (int v = 0; v < n; v++) { if (G[u][v]) { if (!visited[v]) { if (dfs(v, u)) { return true; // 子图中存在环 } } else if (v != p) { return true; // 存在环 } } } return false; // 不存在环 } bool hasCycle() { for (int i = 0; i < n; i++) { visited[i] = false; prev[i] = -1; } for (int u = 0; u < n; u++) { if (!visited[u]) { if (dfs(u, -1)) { return true; // 子图中存在环 } } } return false; // 不存在环 } int main() { scanf("%d", &n); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { int w; scanf("%d", &w); G[i][j] = (w != 0); } } if (hasCycle()) { printf("Yes\n"); } else { printf("No\n"); } return 0; } ``` 其中,dfs() 函数是递归实现的深度优先搜索,返回值为当前子图是否存在环。hasCycle() 函数遍历整个图,判断是否存在环。prev[] 数组用于记录每个节点的前驱节点,判断是否存在“回溯”边。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值