Loss Function

Loss Function 损失函数


loss function (损失函数) = loss term (误差部分) + regularization term (正则化项)

一.loss term(误差部分)

我们使用以下几种例子来说明loss term:
1. gold standard (ideal case)
也被成为“0-1”loss,计数错误分类的次数。
2. hinge (for soft margin SVM)
我们使用 Lhinge 来表示hinge loss.

J(ω)=12ω2+imax(0,1yiωTxi)=12ω2+imax(0,1mi(ω))=R2(ω)+iLhinge(mi)

3. log (for logistic regression, cross entropy error)
4. squared loss (for linear regression)
5. exponential loss (boosting)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值