黄金分割率g 和自然常数e 有什么数学关系?

首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144、233、377、610、987、…..这个数列的名字叫做"斐波那契数列",这些数被称为"斐波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。

斐波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个斐波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n-1)/f(n)-→0.618…。由于斐波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的斐波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。

黄金分割率 := 610/987 = 0.6180344478216819
黄金分割率 = (sqrt(5)-1)/2 = 0.6180339887498949
自然常数 e := 271801/99990 = (271800+1)/(10^5 -10)

设:
自然常数 e := 2.718281828459045
黄金分割率 g := 0.618
黄金增长率 G = 1+g = 1.618
  e - 2.618 = 0.100281828459045
1.618 x 1.618 = 2.617924 := 2.618

求得:
自然常数 e := G^2 + 0.1003 = (1+g)^2 + 0.1003 := 2.618 + 0.1003 = 2.7183
黄金增长率 G := sqrt(e - 0.1003) := 1.618
黄金分割率 g := sqrt(e - 0.1003) -1 := 0.618

:= 读为: 约等于


pi - e = 0.423310825130748

pi := e + 0.42331 = 3.141591828459045

e := pi - 0.42331 = 2.7182826535897933

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值