首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144、233、377、610、987、…..这个数列的名字叫做"斐波那契数列",这些数被称为"斐波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
斐波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个斐波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n-1)/f(n)-→0.618…。由于斐波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的斐波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
黄金分割率 := 610/987 = 0.6180344478216819
黄金分割率 = (sqrt(5)-1)/2 = 0.6180339887498949
自然常数 e := 271801/99990 = (271800+1)/(10^5 -10)
设:
自然常数 e := 2.718281828459045
黄金分割率 g := 0.618
黄金增长率 G = 1+g = 1.618
e - 2.618 = 0.100281828459045
1.618 x 1.618 = 2.617924 := 2.618
求得:
自然常数 e := G^2 + 0.1003 = (1+g)^2 + 0.1003 := 2.618 + 0.1003 = 2.7183
黄金增长率 G := sqrt(e - 0.1003) := 1.618
黄金分割率 g := sqrt(e - 0.1003) -1 := 0.618
:= 读为: 约等于
pi - e = 0.423310825130748
pi := e + 0.42331 = 3.141591828459045
e := pi - 0.42331 = 2.7182826535897933