整除的规律

整除的规律  
(1):所有整数。 
(2):所有偶数。  
(3):各位上数字之和是3的倍数。 
(4):末两位能被4整除。 
(5):个位是0或5。  
(6):各位上数字之和是3的倍数的偶数。 
(7):①末三位与前几位数的差是7的倍数;  ②把个位数字截去,从余下的数中,减去个位数的2倍,差是7的倍数。可继续「截尾、倍大、相加、验差」。  
(8):后三位能被8整除。  
(9):各位上数字之和是9的倍数。 
(10):末位是0。  
(11):①奇数位数字之和与偶数位数字之和的差(大减小)能被11整除;   ②末三位与前几位数的差是11的倍数;  ③把个位数字截去,再从余下的数中,减去个位数,差是11的倍数;可继续「截尾、倍大、相加、验差」。  
(12):若一个整数能被3和4整除,则这个数能被12整除。 
(13):①末三位与前几位的差能被13整除;          ②把个位数字截去,从余下的数中,加上个位数的4倍,和是13的倍 数。可继续「截尾、倍大、相加、验差」。  
(14):7的倍数中的偶数。  
(15):3的倍数中末位为0或5。 
(16):后四位能被16整除。  ②末三位与前几位数的差是13的倍数。  (17):①末三位与前几位数的3倍的差是17的倍数。  ②把个位数字截去,从余下的数中,减去个位数的5倍,差是17的倍数;可继续「截尾、倍大、相加、验差」  
(18):9的倍数中的偶数。  
(19): ①末三位与前几位数7倍的的差是19的倍数。  ②把个位数字截去,从余下的数中加上个位数的2倍,和是19的倍数;可继续「截尾、倍大、相加、验差」  
(23):末四位与前几位数5倍的差是23的倍数。 
(25):最后两位数字是00;25;50;75可被整除。 
(29):末四位与前几位数5倍的差是29的倍数。
(73):末四位与前面的数的差是73的倍数。 
(125):末三位数能被125整除;  
(137):末四位与前面的数的差是137的倍数。
### 整除与光棍数的概念及其数学定义 #### 光棍数的数学定义 光棍数是由连续的数字 `1` 组成的一类特殊自然数,例如 `1`, `11`, `111`, `1111` 等。这些数字可以形式化地表示为 \( R_k = \frac{10^k - 1}{9} \),其中 \( k \) 是该光棍数的位数[^2]。 #### 整除关系 对于任意给定的一个不以 `5` 结尾的奇数 \( x \),存在一个最小的正整数 \( s \),使得 \( x \times s \) 的结果是一个光棍数 \( R_n \)[^3]。这里的 \( n \) 即为所得到的光棍数的位数。 --- ### 编程实现方法 为了找到满足条件的最小解 \( s \) 和对应的光棍数位数 \( n \),可以通过以下方式实现: #### 方法描述 利用同余定理来解决这一问题。具体来说,我们需要寻找最小的 \( n \),使下面的关系成立: \[ 10^n \mod (9x) = 1 \] 这是因为光棍数的形式为 \( R_n = \frac{10^n - 1}{9} \),而我们希望 \( R_n \equiv 0 \pmod{x} \) 成立。通过逐步累加模运算的结果,我们可以高效地找到所需的 \( n \) 值。 以下是基于 C++ 实现的具体代码示例: ```cpp #include <iostream> using namespace std; int main() { long long x; cin >> x; // 输入一个不以5结尾的奇数 long long remainder = 1 % x; // 初始余数 int n = 1; // 初始化光棍数的位数 while (remainder != 0) { // 当余数不为零时继续迭代 remainder = (remainder * 10 + 1) % x; // 更新余数 n++; // 计算下一位 } cout << ((pow(10, n) - 1) / 9) / x << " " << n << endl; // 输出结果 return 0; } ``` 上述代码的核心在于使用 **同余定理** 来减少不必要的大数计算,从而提高效率[^5]。 --- ### 性质总结 任何光棍数都可以被某些特定类型的奇数整除,前提是这些奇数不以 `5` 结尾[^1]。这种特性源于其特殊的数值结构以及模运算中的周期性规律。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值