一、 张量生成
(1) 生成空的5*3的张量:torch.empty(5, 3)
(2) 生成0-1分布的5*3的张量:torch.rand(5, 3)
(3) 生成一个全零的5*3的张量:torch.zeros(5, 3)
(4) 已有矩阵转化为张量:torch.tensor([5.5, 3])
二、 张量操作
(1) 张量相加的两种方式:x + y / torch.add(x, y)
(2) 张量相加并替换自身的值:y.add_(x)
(3) 调整张量的形状:x.view(-1, 8)
(4) 查看张量的具体数值:x.item()
三、 张量和numpy相互转换
(1) tensor到numpy:a.numpy()
(2) numpy到tensor:b = torch.from_numpy(a)
(3) cpu下张量和numpy的机制:张量和ndarray共享物理位置,改变其中一个值,另一个也会随之变化
四、 自动微分
(1) 设置参数方式:.requires_grad=true
(2) 计算微分函数:backward()
(3) 哪个代码段可以阻止梯度计算以及避免使用存储空间:
with torch.no_grad()
(4) 取梯度值:x.grad
(5) 向量的全微分方程:
雅可比行列式,
五、 神经网络
(1) 卷积输出通道数取决于:卷积核个数
(2) 卷积层要求输入输出维度:四维张量
(3) 全连接层要求输入输出维度:二维张量
(4) super初始化方式:super(class, self).__init__()
六、 神经网络完整代码模板:
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 4* 4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = torch.flatten(x, start_dim=1)
x = F.relu(self.fc1(x)) -- 全连接之后不需要池化,池化只针对卷积
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
optimizer = optim.SGD(net.parameters(), lr=0.01)
optimizer.zero_grad()
input = torch.rand(1, 1, 32, 32)
output = net(input)
target = torch.randn(10).view(1, -1)
criterion = nn.MSELoss()
loss = criterion(output, target)
loss.backward()
optimizer.step()
七、 torch package
(1) torch:tensor library
(2) torch.nn:neural network
(3) torch.nn.functional:loss functions / activiation functions / convolution functions
(4) torch.optim: optimization operations(SGD / Adm)
(5) torch.utils:data sets / data loaders
(6) torchvision:popular datasets / model architectures / image transformations
八、 CPU / GPU区别
GPU是并行计算,cpu一般是4或16核,而GPU是上千个核更适合并行计算
九、 tensor的秩
张量中存在的维数,即需要几个索引确定一个元素,或一个张量有多少个轴
十、 CNN网络的输入格式
[Batch, Channel, Height, Width]
十一、 torch.tensor:
(1) 张量:包含一个统一类型的数据
(2) 计算依赖:张量之间的计算依赖于类型和设备
十二、创建张量的4种方式及区别
(1) t1 = torch.Tensor(data)
(2) t2 = torch.tensor(data)
(3) t3 = torch.as_tensor(data)
(4) t4 = torch.from_numpy(data)
其中前两种是创建副本,后两种是共享内存
十三、Tensor operation
(1) squeeze():减少一个秩,只在某一个轴为1时才生效
(2) flatten():使秩为1,所有轴被挤压在一起
(3) stack():秩加1,在一个新轴上使张量相连接
十四、张量元素间操作
同numpy的元素间操作,存在broadcast的行为
十五、缩减操作
t.sum(dim=0)等价于:t[0] + t[1] + t[2]
t.sum(dim=1)等价于:(t[0].sum, t[1].sum, t[2].sum)
十六、mnist的含义
m:modify ;
nist:标准规范
十七、torchvision
(1) 两个重要的类
Dataset类,在torchvision.datasets中,包含__len()__和__getitem()__函数
DataLoader类:在torchvision.utils.data.Dataloader中,作用是批处理、线程管理和shuffle等
(2) torchvision加载FashionMNIST过程
import torchvision
import torchvision.transforms as transforms
trains_set = torchvision.datasets.FashionMNIST(
root=’./data/fashionmnist’,
train=True,
download=True,
transform = transform.Compose([
transforms.ToTensor()
])
)
train_loader = torchvision.utils.data.Dataloader(train_set, batch_size=10)
(3) 访问单个样例:sample = next(iter(train_set))
(4) 访问单子批次:batch = next(iter(train_loader))
十八、创建展示图片的网格
grid = torchvision.utils.make_grid(images, nrow=10)
十九、nn.conv2d(6, 16, 5)对应滤波器维度
滤波器维度:(16, 6, 5, 5)
分别表示:滤波器个数、滤波器深度(对应输入通道数量)、高、宽
二十、访问network的参数信息的代码
for param in network.parameters():
print(param)
二十一、使预测值变为概率值的代码
F.softmax(pred, dim=1),
因为F.softmax(pred, dim=1).sum()值为1
二十二、比较预测值与实际值差异的代码
preds.argmax(dim=1).eq(labels).sum()
二十三、取出tensor中数值的代码
t.item()
二十四、CNN和Linear作用的说明
Cnn是生成特征图,
Linear是欧几里得空间维度的转换
二十五、cnn output size formula
(1) 正方形filter
O = (n – f + 2*p) / s + 1
n*n:input
f*f:filter
p:padding
s:stride
举例:
Input:(28 * 28)
Convolution:(5*5)之后为(24, 24)
Max_pooling:(2*2)之后为(12,12)
(2) 长方形filter
Oh = (nh – fh + 2p) / s + 1
Ow = (nw – fw + 2p) / s + 1
二十六、计算梯度
只计算梯度,未计算权重
loss.backward()
network.conv1.weight.grad的大小与network.conv1.weight的大小一样
二十七、更新权重
利用上面计算的grad来更新权重
optimizer = optim.Adam(network.parameters(), lr=0.01)
optimizer.step()更新权重
二十八、一次epoch的意思
覆盖了所有batch的一次迭代
二十九、optimizer需要在每个batch前清空的原因
optimizer的grad默认情况下是累计的,不清空会导致不同batch的grad不断被累加
三十、局部关闭梯度跟踪的方法
with torch.no_grad():
xxxx
三十一、生成混淆矩阵
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(train_set.targets, train_preds.argmax(dim=1))
三十二、concat和stack的区别
concat是在一个现有的轴上连接一系列张量;stack是在一个新的轴上连接一系列的张量。
举例:
t1 = torch.tensor([1,1,1])
t2 = torch.tensor([2,2,2])
torch.cat((t1,t2), dim=0)为tensor([1,1,1,2,2,2])
torch.stack((t1, t2), dim=0)为tensor([[1,1,1], [2,2,2]])
三十三、tensorboard
(1) 运行tensorboard: tensorboard –logdir==runs(指定日志的目录)
(2) 引入包
from torch.utils.tensorboard import SummaryWriter
该类可实现将数据发送到tensorboard文件中
(3) 使用
tb = SummaryWriter()
tb.add_image() 添加图像
tb.add_graph() 添加无向图
tb.add_scalar() 添加标量
tb.add_histogram() 添加直方图