摘要:本文将就SIFT(Scale Invariant Feature Transform,尺度不变特征转换算法)的基本原理和实现进行阐述。
注:本文将在作者的逐步学习中完善,欢迎批评指正。
概述:SIFT算法由University of British Columbia(英属哥伦比亚大学)的David G. Lowe(http://www.cs.ubc.ca/~lowe/)于1999年提出[1],并于2004年完善[2]。该算法是一种计算机视觉算法,它从图像中提取特有的不变特性,利用这些特性,可以对一个物体的不同视图进行匹配。提取的特性对于图像尺度变化,旋转等具有不变性。
该算法在物体识别,手势识别,机器人地图感知与导航,3D建模,影像缝合与追踪,动作对比等反面有着广泛应用。
注:该算法拥有专利,可用于科学研究,当如果用于商业用途,必须取得相应授权。
算法步骤:该算法主要分4步进行:
1. 尺度空间极值检测(Scale-space extrema detection):该步骤首先利用高斯模糊构建高斯金字塔,然后利用高斯差分(Difference of Gaussian,DoG)构建高斯差分金字塔。然后在DoG空间通过对相邻层图像进行比较获得空间极值点。
2.关键点定位(Keypoint localizat