SIFT算法原理与实现

本文详细介绍了SIFT(尺度不变特征转换)算法,包括尺度空间极值检测、关键点定位、关键点方向分配和生成关键点描述子四个步骤。SIFT算法在计算机视觉领域广泛应用,如物体识别、3D建模等,因其尺度和旋转不变性而备受青睐。虽然该算法拥有专利,但允许用于科研目的。
摘要由CSDN通过智能技术生成

摘要:本文将就SIFT(Scale Invariant Feature Transform,尺度不变特征转换算法)的基本原理和实现进行阐述。

注:本文将在作者的逐步学习中完善,欢迎批评指正。

 

概述:SIFT算法由University of British Columbia(英属哥伦比亚大学)的David G. Lowe(http://www.cs.ubc.ca/~lowe/)于1999年提出[1],并于2004年完善[2]。该算法是一种计算机视觉算法,它从图像中提取特有的不变特性,利用这些特性,可以对一个物体的不同视图进行匹配。提取的特性对于图像尺度变化,旋转等具有不变性。

        该算法在物体识别,手势识别,机器人地图感知与导航,3D建模,影像缝合与追踪,动作对比等反面有着广泛应用。

注:该算法拥有专利,可用于科学研究,当如果用于商业用途,必须取得相应授权。

 

算法步骤:该算法主要分4步进行:

1. 尺度空间极值检测(Scale-space extrema detection):该步骤首先利用高斯模糊构建高斯金字塔,然后利用高斯差分(Difference of Gaussian,DoG)构建高斯差分金字塔。然后在DoG空间通过对相邻层图像进行比较获得空间极值点。

2.关键点定位(Keypoint localizat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值