图像特征匹配方法——SIFT算法原理及实现

传统图像处理中图像特征匹配有三个基本步骤:特征提取、特征描述和特征匹配。特征提取就是从图像中提取出关键点(或特征点、角点)等。特征描述就是用一组数学向量对特征点进行描述,其主要保证不同的向量和不同的特征点之间是一种对应的关系,同时相似的关键点之间的差异尽可能小。特征匹配其实就是特征向量之间的距离计算,常用的距离有欧氏距离、汉明距离、余弦距离等。

SIFT算法又叫尺度不变特征变换匹配算法, SIFT特征对于旋转和尺度均具有不变性,并且对于噪声、视角变化和光照变化具有良好的鲁棒性,所以我们今天来学习一下SIFT算法。

一、SIFT简介

二、SIFT算法原理

1.检测尺度空间极值

2.关键点的精确定位

3.关键点主方向分配

4.关键点的特征描述

三、关键点匹配

四、实现

1.检测感兴趣点

2.描述子匹配

3.地理标记图像匹配

五、注意事项

1.vlfeat安装

2.Graphviz安装教程

3.关于图像

一、SIFT简介

SIFT(Scale Invariant Feature Transform,尺度不变特征变换匹配算法)是由David G. Lowe教授在1999年(《Object Recognition from Local Scale-Invariant Features》)提出的高效区域检测算法,在2004年(《Distinctive Image Features from Scale-Invariant Keypoints》)得以完善。

SIFT可以应用到物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对等方向。

SIFT算法的特点:

  1. 稳定性
  2. 独特性
  3. 多量性
  4. 高速性
  5. 可扩展性

SIFT算法可以的解决问题:

  1. 目标的旋转、缩放、平移(RST)
  2. 图像放射/投影变换(视点viewpoint)
  3. 光照影响(illumination)
  4. 部分目标遮挡(occlusion)
  5. 杂物场景(clutter)
  6. 噪声

二、SIFT算法原理

1.检测尺度空间极值

检测尺度空间极值就是搜索所有尺度上的图像位置,通过高斯微分函数来识别对于尺度和旋转不变的兴趣点。其主要步骤可以分为建立高斯金字塔、生成DOG高斯差分金字塔和DOG局部极值点检测。为了让大家更清楚,我先简单介绍一下尺度空间,再介绍主要步骤。

(1)尺度空间

一个图像的尺度空间https://i-blog.csdnimg.cn/blog_migrate/1d827c9b11f2e019cdac497bd6eed994.jpeg,定义为一个变化尺度的高斯函数https://i-blog.csdnimg.cn/blog_migrate/549b8d3d655aa854512e7fdeb83c31ce.jpeg与原图像https://i-blog.csdnimg.cn/blog_migrate/5e7db85612a22741c6b8a9c12f82c0f6.jpeg的卷积。即:

https://i-blog.csdnimg.cn/blog_migrate/75eddf4f8ac4a748919788afa3678c0a.jpeg

其中,*表示卷积计算。

https://i-blog.csdnimg.cn/blog_migrate/3919b4866e3809dc22b0b98ff2a7e1d6.jpeg

其中,m、n表示高斯模版的维度,(x,y)代表图像像素的位置。https://i-blog.csdnimg.cn/blog_migrate/7c267599889b2caf35ba48ae2c963994.jpeg为尺度空间因子,https://i-blog.csdnimg.cn/blog_migrate/7c267599889b2caf35ba48ae2c963994.jpeg值越小表示图像被平滑的越少,相应的尺度就越小。小尺度对应于图像的细节特征,大尺度对应于图像的概貌特征,效果如下图所示,尺度从左到右,从上到下,一次增大。

(2)建立高斯金字塔

尺度空间在实现时,使用高斯金字塔表示,高斯金字塔的构建分为两部分:

1.对图像做不同尺度的高斯模糊

2.对图像做降采样(隔点采样)

图像的金字塔模型是指,将原始图像不断降阶采样,得到一系列大小不一的图像,由大到小,从下到上构成的塔状模型。原图像为金子塔的第一层,每次降采样所得到的新图像为金字塔的上一层(每层一张图像),每个金字塔共n层。金字塔的层数根据图像的原始大小和塔顶图像的大小共同决定。

为了让尺度体现其连续性,高斯金字塔在简单降采样的基础上加上了高斯滤波。如上图所示,将图像金字塔每层的一张图像使用不同参数做高斯模糊,使得金字塔的每层含有多张高斯模糊图像,将金字塔每层多张图像合称为一组(Octave),金字塔每层只有一组图像,组数和金字塔层数相等,每组含有多层Interval图像。

高斯图像金字塔共o组、s层, 则有:

其中,σ表示尺度空间坐标,s表示sub-level层坐标,表示初始尺度,S表示每组层数(一般为3~5)

(3)建立DOG高斯差分金字塔

为了有效提取稳定的关键点,利用不同尺度的高斯差分核与卷积生成。

DOG函数:

DOG在计算上只需相邻高斯平滑后图像相减,因此简化了计算!

可以通过高斯差分图像看出图像上的像素值变化情况。(如果没有变化,也就没有特征。特征必须是变化尽可能多的点。)DOG图像描绘的是目标的轮廓。

(4)DOG局部极值检测

特征点是由DOG空间的局部极值点组成的。为了寻找DOG函数的极值点,每一个像素点要和它所有的相邻点比较,看其是否比它的图像域和尺度域 的相邻点大或者小。

中间的检测点和它同尺度的8个相邻点和上下相邻尺度对应的9×2个 点共26个点比较,以确保在尺度空间和二维图像空间都检测到极值点。

2.关键点的精确定位

以上方法检测到的极值点是离散空间的极值点,以下通过拟合三维二次函数来精确确定关键点的位置和尺度,同时去除低对比度的关键点和不稳定的边缘响应点(因为DOG算子会产生较强的边缘响应),以增强匹配稳定性、提高抗噪声能力。

(1)关键点的精确定位

利用已知的离散空间点插值得到的连续空间极值点的方法叫做子像素插值(Sub-pixel Interpolation)。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值