- 博客(20)
- 资源 (1)
- 收藏
- 关注
原创 kitti数据集评估文档
输入:文件路径:eval\data\stereo_floweval\results\eval_results\data:待评估算法所得到的稠密匹配结果。eval\data\stereo_flow文件夹分组(ground truth):disp_noc:视差无遮挡的ground truthdisp_occ:视差包含遮挡的ground truthdisp_refl_noc:视差5pixel无遮挡的ground truthdisp_refl_occ:视差5pixel包含遮挡的ground trut
2021-06-07 11:32:28 1575 5
原创 操作系统笔记
操作系统笔记1.操作系统的概念和定义总结(1)操作系统总结(2)操作系统四个特征总结(3)操作系统的发展和分类的总结(4)操作系统的运行机制 体系结构 总结(5)中断和异常总结2.1 进程与线程总结(1)进程总结(2)进程的状态和转换 总结(3)进程控制 总结(4)进程通信 总结(5)线程 多线程模型 总结2.2 进程的调度总结(1)处理机调度 总结(2)进程调度的时机 切换与过程 调度方式 总结(3)调度算法的评价指标 总结(4)进程同步 进程互斥 总结(5)进程互斥的软件实现方法 总结(6) 进程互斥.
2020-08-21 17:15:36 223
转载 操作系统笔记 王道视频
文章目录(一) 1. 操作系统的概念和定义 1.1. 操作系统的层次结构 1.2.操作系统的功能和目标 1.3. 操作系统的四个基本特征 1.4.操作系统的发展和分类 1.5.操作系统的运行机制 体系结构 1.6.中断和异常 总结 (1)操作系统总结 (2)操作系统四个特征总结 (3)操作系统的发展和分类的总结 (4)操作系统的运行机制 体系结构 总结 (5)中断和异常总结 (二) 2.1 进程与线程 2.1
2020-08-21 15:06:47 351
原创 未成熟番茄识别
对果实进行产量评估是精准农业领域的一个重要环节。产量的预先估计不仅可以减少一定的培养时间,节约劳动力,还可以根据果实生长状况优化作物肥料的使用。为实现番茄的产值预估,就需要对未成熟番茄进行统计。然而未成熟番茄果实因颜色与背景相似,在自动化管理中往往难以准确识别,这不仅会使产量估计产生较大偏差,也无法对果实生长状况进行准确监测。因此,精确地识别未成熟番茄果实具有重要意义。为了实现对未成熟番茄果实的自动识别,本软件首先使用超像素分割对未成熟番茄进行处理,其次,使用基于密集和稀疏重构的显著性检测方法(DSR)
2020-08-18 17:05:10 628 1
原创 基于最优傅里叶描述子的粘连条锈病孢子图像分割
小麦条锈病是小麦锈病的一种,是中国小麦生产中分布广、传播快、危害面积大的重要病害之一,特大流行年份减产可达60%以上,甚至绝产。小麦条锈病越夏孢子数是判断条锈病是否爆发的关键参数之一,但现有方法对粘连条锈病孢子的自动检测尚有困难。如何实现条锈病的有效防控一直是我国农业研究领域的重点和难点。对条锈病害病孢子人工计数会消耗大量人力,计数误差较大。实现粘连孢子的自动准确分割与计数对小麦条锈病孢子的在线检测具有重要的研究意义。为了实现粘连条锈病孢子的准确计数,提出了一种融合K-means聚类算法与优选傅里叶描述
2020-08-18 16:58:48 366
原创 光流
Efficient Coarse-to-Fine Patch Match for Large Displacement Optical FlowCVPR 2016本文提出了一个快速计算大位移光流的算法。一般的算法在 tiny structures with large motions 情况下容易出现误差。这里写图片描述算法采用多尺度框架,不同尺度可以提取出不同的信息。这里写图片描述这里写图片描述在这里插入图片描述两幅图像 I1,I2,从I1里提取一系列种子点。网格提取,每个d*d区域
2020-08-18 15:03:32 301
原创 预测&编码
预测编码,顾名思义预测就是利用前面的一个或者多个信号对下一个信号进行预测。预测编码就是根据离散信号之间存在的一定相关性特点进行预测,不同的是预测编码是对实际值与预测值的差值进行编码。如果预测的足够准确,那么误差信号就会很小,这样需要的码位也会大大减少,达到数据压缩的目的。举个例子:收端解码时预测过程与发端相同,预测器也相同,收端输出的信号是发端的近似值,两者误差是:Ps:每行最开始的几个像素无法预测,需要其他的编码方式编码有损的预测编码—DPCM编码预测编码是一种有损编码。所谓的
2020-08-16 15:49:27 5831
原创 益书一世界——志愿者活动
为响应西电关工委与蒲城县三中联合举办“‘益’起读书”活动,双方学子积极互动,分享阅读体会。若非“‘益’起读书”活动,我几乎忘记了自己有多久没有安静地坐在那里,打开一本书默默地阅读。1说起读书,不由想起自己“读”第一本书时的趣事。我读得第一本书是一本注音版《三国演义》。或许是父母的期许过高,即使是注音插图版的图书,对于不过四、五岁年纪的我也实在是太难了。为了鼓励我读书,妈妈应允我读完两页就可以和小伙伴们出去玩耍,并表示我可以将不认识的字圈起来。为了出去玩,我乖乖地拿起书和铅笔,坐在桌前“读”了起来
2020-08-16 15:48:58 271
原创 一张条形码的“成才”之路
每次去超市,收银员手拿扫码枪“bi~”扫一下条形码,照出一道红色光线就可以将商品的信息全部展现在显示屏上。神不神奇?我们今天就来讲讲机器是如何读取的。 我们先来看看条形码下面的数字。一维条形码共13位,如上图其条形码为6 971439 755073,其中1~3位代表的是商品的出产地区(国家),如690~699是中国大陆的代码,由国际上分配。目前只开到697,也就是说,如果你在市面上看到698或者699开头的条形码,那可能需要考虑下商品的真假了。4-8位代表着生产厂商代码,由...
2020-08-16 15:47:38 416
原创 说说你不知道的手机双摄
14、15年的荣耀6 plus等款手机将手机双摄带入了高速发展期,16年开始,iphone7 plus、华为10等款手机的问世,手机正式进入了“双摄时代”。可是我们为什么要在手机中强行加入双摄配置?炙手可热的手机双摄究竟是市场营销的噱头还是确有实用?今天就带大家走进你不知道的手机双摄时代。在手机的摄像头设计中,由于光圈是固定的,在硬件层面上并不能实现单反中大光圈“焦外虚化”的效果。但是硬件不够,软件来凑。但手机运算性能如此强大,为何不能后期处理出“焦外虚化”的照片呢?因为单摄像头不能记录物体的景深。
2020-08-16 15:46:22 707
原创 变换编码—正交变换编码
变换?指的是把图像中的各个像素通过一种数学变换(如傅立叶变换、正交变换等)从一种空间变换到一种空间(如频率域、正交矢量空间),信号在时域或空域信息冗余度大,而变换后参数之间相关性很小或者不相关,减少了数据量。利用人的视觉特性—对高频细节不敏感,滤除高频系数、保留低频系数,对变换后的信号进行量化与编码操作,达到数据压缩的效果。最后再在接收端对信号译码、反变换恢复原图。预测编码可以去除图像数据的时间和空间上的冗余,而变换编码则是希望数据在新的空间中尽可能相互独立,能力更加集中。但我们为什么要选择正交
2020-08-16 15:45:27 2524
原创 5G信道编码之争
2019年华为技术再次突围,中国有一次掀起5G热潮。时间回到2016年,让我们去看看当年精彩的5G信道编码之争。什么是信道编码?在移动通信中,由于存在干扰和衰落,信号在传输过程中会出现差错。所以需要对数字信号采用纠、检错编码技术,以增强数据在信道中传输时抗干扰的能力,提高系统的可靠性。对要在信道中传送的数字信号进行的纠、检错编码就是信道编码。信道编码是为了降低误码率和提高数字通信的可靠性而采取的编码。信道编码是如何检出和校正接收比特流中的差错呢?通过加入一些冗余比特,把几个比特上携带的信息扩散到
2020-08-16 15:44:50 4750
原创 5G进阶之路
2019年有个大新闻,那就是——“5G时代来了”。我校也于7月3日和移动签署了5G合作协议,biu~美好的校园5G时代开启啦! 5G新闻铺天盖地,啥是5G?它与4G有有啥不同呢?我来给大家谝谝5G的前世今生。话说古代飞鸽传书……算了还是从1G讲起吧。1G:大哥大亮瞎我的眼武功秘籍:《电路分析》、《模拟电子技术》《信号与系统》等相关课程。 想当年大哥大可谓让一般人望而却步,使用它的也多是商界大哥级的人物。那年头,你开一辆宝马车出门,别人也以为是公家车,远远不如大哥大耀眼。...
2020-08-16 15:43:01 895
原创 3D视觉下的光与影
提到3D场景,你脑海中会浮现出什么?是画面美幻、气势磅礴的《阿凡达》,还是特效炫酷、守卫宇宙的漫威英雄系列,亦或是今年贺岁档票房破20亿的《流浪地球》。3D电影究竟是如何做到让你身临其境,带给你一种故事发生在你身边、争斗近在眼前的感觉,它又是什么原理呢?今天就带大家感受下3D视觉下的光影变换。 3D电影就是利用了双目效应及大脑成像的规律,对大银幕上的平面成像变了个小魔术。简单的说,人眼在观看一个物体时,两眼所见角度不同,形成的像也并不完全相同。 不信的话可以拿桌面的水杯做下...
2020-08-16 15:37:29 374
原创 双目立体匹配
立体匹配共四步:匹配代价计算、匹配代价聚集、视差计算、视差优化立体匹配主要解决两个问题:一个是低纹理区域的视差估计一个是深度不连续区域的视差估计,也就是遮挡区域图像分割(Image Segmentation)主要目的也就是将图像(image)分割成若干个特定的、具有独特性质的区域(region),然后从中提取出感兴趣的目标(object)2003[1] Stereo matching using belief propagation (BP)改进:置信度传播算法进行视差求
2020-08-16 15:17:07 1134
vs2019+opencv+contrib.zip
2021-08-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人