变换编码—正交变换编码

变换?指的是把图像中的各个像素通过一种数学变换(如傅立叶变换、正交变换等)从一种空间变换到一种空间(如频率域、正交矢量空间),信号在时域或空域信息冗余度大,而变换后参数之间相关性很小或者不相关,减少了数据量。

利用人的视觉特性—对高频细节不敏感,滤除高频系数、保留低频系数,对变换后的信号进行量化与编码操作,达到数据压缩的效果。最后再在接收端对信号译码、反变换恢复原图。

预测编码可以去除图像数据的时间和空间上的冗余,而变换编码则是希望数据在新的空间中尽可能相互独立,能力更加集中。但我们为什么要选择正交变换呢?让我们看看正交变换的优势所在。

  1. 极限熵的保持

正交变换本身不会丢失信息,可以用传递变换系数实现信息传递。

  1. 能量保持

变换域中信号能量与原来空间域中的信号能量相等。

  1. 去(解)相关

正交变换可以将强相关的空间样值变为不相关或弱相关的变换系数,去除存在于相关性之中的数据冗余度。

  • 能量重新分配与集中

变换域系数与DPCM法相同,零与小幅值系数占绝大多数,但DPCM的幅度分布在全空间均可能,要对每一个残差编码,而变换法则按统计规律集中分布在一定区域上,舍弃能量较小者或给其分配较少的位数,压缩数据率。

变换域系数的编码有区域编码、阈值编码、系数量化三种方式。其中区域编码只对规定区域内的变换系数进行量化编码,而编码区里域的形状取决于压缩比、变换方式、变换块大小等因素。变换域信号能量集中在矩阵左上部,且左上角元素集中能量最大,因此我们只对变换域左上部区域变换系数进行编码传输,对右下角不进行编码传输。

这样的编码方式虽然简单并有利于限制误码扩散,但是它会严重损失图像质量,造成边缘模糊等问题。

因此可以采用阈值编码,多数低频成分仍被编码输出,而少数超过阈值的高频成分也被编码输出,来弥补区域编码的不足。

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

beryl2017

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值