矩阵
文章平均质量分 81
bestlinjiayin
机器学习+数据挖掘
展开
-
正则化、归一化含义解析
原文地址 http://sobuhu.com/ml/2012/12/29/normalization-regularization.html正则化(Regularization)、归一化(也有称为正规化/标准化,Normalization)是对数据尽心预处理的方式,他们的目的都是为了让数据更便于我们的计算或获得更加泛化的结果,但并不改变问题的本质,下面对他们的作用分别做一下科普,如有不正确之处转载 2014-03-03 15:26:49 · 1370 阅读 · 1 评论 -
矩阵-理解
作为一名非数学专业的初次学习线性代数仅得了68分的大三学生,最近看了一下别人很精辟的文章,对线性代数这个东西又有了新的理解。在这里我把对线性的一些体会写下来。写这些体会的目的,是希望能够对像我一样的比较愚钝的学生能有所帮助,希望能够让这些教材中抽象的概念能够在他们的脑海中产生直观的生动的印象,帮助和我一样的学弱更好的理解数学概念,体会数学之美。 在此声明,这里面的东西大多不是我自转载 2014-04-11 22:24:23 · 3049 阅读 · 0 评论 -
矩阵
作为一名非数学专业的初次学习线性代数仅得了68分的大三学生,最近看了一下别人很精辟的文章,对线性代数这个东西又有了新的理解。在这里我把对线性的一些体会写下来。写这些体会的目的,是希望能够对像我一样的比较愚钝的学生能有所帮助,希望能够让这些教材中抽象的概念能够在他们的脑海中产生直观的生动的印象,帮助和我一样的学弱更好的理解数学概念,体会数学之美。 在此声明,这里面的东西大多不是我自转载 2014-04-11 22:24:06 · 3543 阅读 · 0 评论 -
矩阵的本质-运动的描述
前不久chensh出于不可告人的目的,要充当老师,教别人线性代数。于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次。很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势的学生认为是神经病,还是比较难的事情。 可怜的chensh,谁让你趟这个地雷阵?!色令智昏啊!线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教转载 2014-04-10 16:27:45 · 1219 阅读 · 0 评论 -
SVD&Search Engines
An Introduction to Singular Value DecompositionWhat Does This Have to do With Search Engines?So, to review, in order to run a search engine with the vector space model, we first have to convert转载 2014-04-22 23:26:23 · 1168 阅读 · 0 评论 -
SVD几何分析
[source url] http://www.ams.org/samplings/feature-column/fcarc-svdWe Recommend a Singular Value DecompositionIn this article, we will offer a geometric explanation of singular value decompositio转载 2014-04-17 22:00:03 · 749 阅读 · 0 评论 -
Latent semantic analysis note(LSA)
1 LSA IntroductionLSA(latent semantic analysis)潜在语义分析,也被称为LSI(latent semantic index),是Scott Deerwester, Susan T. Dumais等人在1990年提出来的一种新的索引和检索方法。该方法和传统向量空间模型(vector space model)一样使用向量来表示词(terms)和文转载 2014-04-17 16:43:46 · 666 阅读 · 0 评论 -
级数的图形理解
我在“线性之我见”里面谈到泰勒级数和傅里叶级数都可以看做是线性特征分解,它们分别是以幂函数、三角函数为基函数的。不过这么说也仅仅是一个概念,不能在脑海里出图啊,俗话说有图才有真相,下面我就用图来阐述一下这两个级数到底在干什么。 泰勒展式的目的其实十分明确:在某一点附近,用多项式函数去逼近(近似代替)一个函数。为了近似效果着想,我们恨不得这个多项式函数在那一点的值转载 2014-04-13 21:34:43 · 3332 阅读 · 0 评论 -
zz 矩阵分解的Jungle
美帝的法国貌似是美法混血的有心人士(此有心人士长期从事航天飞机研究。。汗。。)收集了市面上的矩阵分解的几乎所有算法和应用,由于源地址在某神秘物质之外,特转载过来,源地址Matrix Decompositions has a long history and generally centers around a set of known factorizations such as LU,转载 2014-03-17 10:46:18 · 716 阅读 · 0 评论 -
Singular value decomposition
矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积,可分为三角分解、满秩分解、QR分解、Jordan分解和SVD(奇异值)分解等,常见的有三种:1)三角分解法 (Triangular Factorization),2)QR 分解法 (QR Factorization),3)奇异值分解法 (Singular Value Decompostion)。转载 2014-06-13 16:12:36 · 3825 阅读 · 0 评论