bev
文章平均质量分 67
bestrivern
热爱计算机视觉,机器学习,算法,编程,正在不断学习中
展开
-
Lift, Splat, Shoot: Encoding Images from Arbitrary Camera Rigs by Implicitly Unprojecting to 3D
一.introduction 目前的计算机视觉算法任务,基于输出结果是否与输入图像在同一个参考系下,可以分为两类: • 预测结果与输入不在同一个参考系:分类 • 预测结果与输入在同一个参考系:目标检测、语义分割、全景分割 从这个角度来看,基于BEV的自动驾驶感知算法,属于前一个类别,即预测结果与输入不在同一个参考系,这个最终得到的BEV结果属于本体车辆参考系。一般的做法是,通过算法模型,把属于多个参考系下的多模态数据,进行融合预测,形成在BEV参考系下的预测结果,如下图所示。 那么,多参考原创 2022-05-12 22:08:32 · 3071 阅读 · 0 评论 -
A Sim2Real Deep Learning Approach for theTransformation of Images from Multiple Vehicle-Mounted Cam
A Sim2Real Deep Learning Approach for theTransformation of Images from Multiple Vehicle-Mounted Cam原创 2022-05-09 12:37:39 · 656 阅读 · 0 评论 -
PersFormer
Motivation 在前视图上做2D图像的分割技术很成熟,但是2D的图像空间不适用于复杂的工业级场景。为什么这么说呢,有两方面原因,一方面是下游的任务例如PNC更需要BEV视角的检测结果,有些方法将前视图上的车道线分割结果通过相机内外参变换到BEV空间,有些则更优雅的通过相机内外参将前视图的特征变换到BEV空间的特征,但这样的话BEV的特征强依赖于前视图的特征,会受到前视图中遮挡,scale变换的很大的影响。另一方面,我们应该要考虑车道线本身的height,这个height定义为车道线在BEV 3.原创 2022-04-07 13:41:34 · 630 阅读 · 0 评论 -
BEVSegFormer
Introduction 现在很多BEV的工作都是怎么做的呢,有如下几种方式: 传统方法。在iamge空间做分割,然后将它变换到BEV空间,通过IPM变换,这种方法依赖与精准的内参和外参。这种方法是基于当前情况做的视角变换,当出现遮挡或者远距离的时候就会不准 深度学习的方法,lift-splat-shoot[1]通过诸逐像素点的深度估计完成image视角到BEV视角的变换,但使用深度估计增加了view变换过程的复杂性,故而一些方法[2]和[3]通过MLP和FC层本来学习这种image空间到BEV空间的原创 2022-03-30 10:51:37 · 4676 阅读 · 0 评论