# LaTeX数学公式编辑(1)——行内公式&行间公式

• 如果是中文, 则不显示, 例如代码 $根号9=3$ 编译之后显示为 $9=3$$9=3$, 而代码$\text{根号}9=3$ 编译之后显示为 $\text{根号}9=3$$\text{根号}9=3$.
• 如果是英文, 虽然显示, 但显示为斜体 (行文中出现的英文一般为正体).

# 2. 行间公式

## 2.1 单行编号

$$\label{...} \int_0^1f(t)dt = \iint_Dg(x,y)dxdy.$$

$\begin{array}{}\text{(1)}& {\int }_{0}^{1}f\left(t\right)dt={\iint }_{D}g\left(x,y\right)dxdy.\end{array}$

## 2.2 单行不编号

$\int_0^1f(t)dt = \iint_Dg(x,y)dxdy.$

\begin{equation*}
\int_0^1f(t)dt = \iint_Dg(x,y)dxdy.
\end{equation*}

${\int }_{0}^{1}f\left(t\right)dt={\iint }_{D}g\left(x,y\right)dxdy.$

## 2.3 多行编号

\begin{equation}\label{...}
\begin{split}
\frac{1}{2} (\sin(x+y) + \sin(x-y)) =& \frac{1}{2}(\sin x \cos y + \cos x \sin y)\\
& + \frac{1}{2} (\sin x \cos y - \cos x \sin y)\\
=& \sin x \cos y.
\end{split}
\end{equation}

$\begin{array}{}\text{(2)}& \begin{array}{rl}\frac{1}{2}\left(\mathrm{sin}\left(x+y\right)+\mathrm{sin}\left(x-y\right)\right)=& \frac{1}{2}\left(\mathrm{sin}x\mathrm{cos}y+\mathrm{cos}x\mathrm{sin}y\right)\\ & +\frac{1}{2}\left(\mathrm{sin}x\mathrm{cos}y-\mathrm{cos}x\mathrm{sin}y\right)\\ =& \mathrm{sin}x\mathrm{cos}y.\end{array}\end{array}$

\begin{equation}\label{...}
\begin{dcases}
\frac{dS}{dt} = \Lambda - \beta SI - \mu S -\mu_1 mZS + \delta_0R, \\
\frac{dI}{dt} = \beta SI - (\mu+\delta+\gamma)I.
\end{dcases}
\end{equation}

$\begin{array}{}\text{(3)}& \left\{\begin{array}{l}\frac{dS}{dt}=\mathrm{\Lambda }-\beta SI-\mu S-{\mu }_{1}mZS+{\delta }_{0}R,\\ \frac{dI}{dt}=\beta SI-\left(\mu +\delta +\gamma \right)I.\end{array}\end{array}$

\begin{equation}\label{...}
D(x) =
\begin{cases}
1, & \text{if } x \in \mathbb{Q};\\
0, & \text{if } x \in \mathbb{R}\setminus\mathbb{Q}.
\end{cases}
\end{equation}

## 2.4 多行不编号

\begin{align*}
\frac{1}{2} (\sin(x+y) + \sin(x-y)) =& \frac{1}{2}(\sin x \cos y + \cos x \sin y)\\
& + \frac{1}{2} (\sin x \cos y - \cos x \sin y)\\
=& \sin x \cos y.
\end{align*}

$\begin{array}{rl}\frac{1}{2}\left(\mathrm{sin}\left(x+y\right)+\mathrm{sin}\left(x-y\right)\right)=& \frac{1}{2}\left(\mathrm{sin}x\mathrm{cos}y+\mathrm{cos}x\mathrm{sin}y\right)\\ & +\frac{1}{2}\left(\mathrm{sin}x\mathrm{cos}y-\mathrm{cos}x\mathrm{sin}y\right)\\ =& \mathrm{sin}x\mathrm{cos}y.\end{array}$

# 4. 参考文献

[1] 刘海洋. LaTeX 入门 [M]. 北京: 电子工业出版社, 2013.
[2] 胡伟. LaTeX 2e完全学习手册(第二版). 北京: 清华大学出版社, 2013.

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120