线性时不变系统可镇定 (stabilizable) 等价命题证明

考虑如下的线性时不变系统:
x ˙ = A x + B u ( 1 ) y = C x + D u ( 2 ) \dot{x} = Ax + Bu \qquad (1) \\ y = Cx + Du \qquad (2) x˙=Ax+Bu(1)y=Cx+Du(2)

(注: 矩阵或向量上的 " * " 均代表转置)

定理 1 下列命题等价:

  • (i) ( A , B ) (A, B) (A,B) 可控;
  • (ii) 对任意的 t ≥ 0 t\geq 0 t0, 矩阵 W c ( t ) : = ∫ 0 t e A τ B B ∗ e A ∗ τ d τ W_{c}(t):=\int_{0}^{t} e^{A \tau} B B^{*} e^{A^{*} \tau} d \tau Wc(t):=0teAτBBeAτdτ 正定;
  • 可控性矩阵 C = [ B A B A 2 B … A n − 1 B ] \mathcal{C}=\left[\begin{array}{lllll}{B} & {A B} & {A^{2} B} & {\ldots} & {A^{n-1} B}\end{array}\right] C=[BABA2BAn1B] 行满秩, 即 ⟨ A ∣ I m B ⟩ : = ∑ i = 1 n Im ⁡ ( A i − 1 B ) = R n \langle A | I m B\rangle:=\sum_{i=1}^{n} \operatorname{Im}\left(A^{i-1} B\right)=\mathbb{R}^{n} AImB:=i=1nIm(Ai1B)=Rn;
  • 对所有的 λ ∈ C \lambda \in \mathbb{C} λC, 矩阵 [ A − λ I , B ] [A-\lambda I, B] [AλI,B] 行满秩;
  • λ \lambda λ c c c 为矩阵 A A A 的任意特征值和相应的任意左特征向量, 即 x ∗ A = x ∗ λ x^{*} A=x^{*} \lambda xA=xλ, 那么 x ∗ B ≠ 0 x^{*} B \neq 0 xB=0;
  • 通过选取适当的矩阵 F F F, 矩阵 A + B F A+BF A+BF 的特征值可自由配置.

定义 2 对于一个非强迫系统 x ˙ = A x \dot{x} = Ax x˙=Ax, 如果 A A A 的所有特征值均位于左半开平面, 即 Re λ ( A ) < 0 \text{Re}\lambda(A)<0 Reλ(A)<0, 则该系统是稳定的. 具有此类性质的矩阵 A A A 称为稳定矩阵或 Hurwitz 矩阵.

定义 3 若存在状态反馈 u = F x u = Fx u=Fx 使得系统 (1) 稳定, 即使得 A + B F A+BF A+BF 稳定, 则称 (1) 或矩阵对 ( A , B ) (A,B) (A,B) 可镇定.

定理 2 下列命题等价:

  • (i). ( A , B ) (A,B) (A,B) 可镇定;
  • (ii) 对所有 Re λ ≥ 0 \text{Re}\lambda \geq 0 Reλ0, [ A − λ I B ] [A-\lambda I\quad B] [AλIB] 行满秩;
  • (iii) 对满足 x ∗ A = x ∗ λ x^*A = x^*\lambda xA=xλ Re λ ≥ 0 \text{Re}\lambda \geq 0 Reλ0 的所有 λ \lambda λ x x x, 有 x ∗ B ≠ 0 x^*B\neq0 xB=0;
  • (iv) 存在 F F F 使得 A + B F A+BF A+BF 为 Hurwitz.

证明:
(i) ⇔ \Leftrightarrow (iv): “ ⇒ \Rightarrow ”: 若 ( A , B ) (A,B) (A,B)可镇定, 则存在 F F F 使 A + B F A+BF A+BF 稳定, 即 A + B F A+BF A+BF 为 Hurwitz. “ ⇐ \Leftarrow ”: 由定义 2, Re λ ( A + B F ) < 0 \text{Re}\lambda(A+BF)<0 Reλ(A+BF)<0, 则 A + B F A+BF A+BF 稳定, 由定义 3 可知 ( A , B ) (A,B) (A,B) 可镇定.

(i) ⇔ \Leftrightarrow (ii): “ ⇒ \Rightarrow ”: 系统 (1) 可镇定当且仅当存在矩阵 F F F 使得所有 Re λ ( A + B F ) < 0 \text{Re}\lambda(A+BF)<0 Reλ(A+BF)<0 ⇔ \Leftrightarrow 特征方程不存在非负根 ⇔ \Leftrightarrow 对任意 λ = λ ( A ) ≥ 0 \lambda = \lambda(A)\geq0 λ=λ(A)0, 有 rank [ λ I − ( A + B F ) ] = n \text{rank}[\lambda I - (A + BF)] = n rank[λI(A+BF)]=n.
rank [ λ I − ( A + B F ) ] = rank ( [ λ I − A B ] [ I − F ] ) ≤ min ⁡ { rank [ λ I − A B ] , rank [ I − F ] } ≤ rank [ λ I − A B ] . \text{rank}[\lambda I - (A + BF)] = \text{rank}\left( [\lambda I-A \quad B] \begin{bmatrix} I\\ -F \end{bmatrix}\right)\\ \leq \min \left\{ \text{rank}[\lambda I-A \quad B], \text{rank}\begin{bmatrix} I\\ -F \end{bmatrix} \right\}\\ \leq \text{rank}[\lambda I-A \quad B]. rank[λI(A+BF)]=rank([λIAB][IF])min{rank[λIAB],rank[IF]}rank[λIAB]. 于是有 rank [ λ I − A B ] = n \text{rank}[\lambda I-A \quad B] = n rank[λIAB]=n

预备知识: 设 Φ ∈ R n × n , Ψ ∈ R n × r , Ω ∈ R q × n \Phi \in \mathbb{R}^{n\times n}, \Psi \in \mathbb{R}^{n\times r}, \Omega \in \mathbb{R}^{q\times n} ΦRn×n,ΨRn×r,ΩRq×n, 则存在 X ∈ R r × q X \in \mathbb{R}^{r\times q} XRr×q 使得
rank ( Φ − Ψ X Ω ) = n ⇔ rank ( Φ Ψ ) = rank [ Φ Ω ] = n . \text{rank}(\Phi - \Psi X \Omega) = n \Leftrightarrow \text{rank}(\Phi\quad \Psi) = \text{rank} \begin{bmatrix} \Phi \\ \Omega \end{bmatrix} = n. rank(ΦΨXΩ)=nrank(ΦΨ)=rank[ΦΩ]=n. [段广仁等, 广义线性系统分析与设计, 科学出版社, 2012, 引理 5.4.1]

⇐ \Leftarrow ”: 对满足 Re λ ≥ 0 \text{Re} \lambda \geq 0 Reλ0 的任意复数 λ \lambda λ, 选取 Φ n × n = A − λ I \Phi_{n\times n} = A - \lambda I Φn×n=AλI, Ψ n × r = B \Psi_{n\times r} = B Ψn×r=B, Ω n × n = − I n × n \Omega_{n\times n} = -I_{n\times n} Ωn×n=In×n, 于是存在 X r × n = F X_{r\times n} = F Xr×n=F 使得: rank ( A − λ I B ) = rank ( A − λ I − I n × n ) = n \text{rank} (A - \lambda I \quad B) = \text{rank} \binom{A - \lambda I}{-I_{n\times n}} = n rank(AλIB)=rank(In×nAλI)=n ⇔ \Leftrightarrow rank ( A − λ I + B F ) = rank ( A − λ I + B F ) = n \text{rank} (A - \lambda I + BF) = \text{rank} (A - \lambda I + BF) = n rank(AλI+BF)=rank(AλI+BF)=n ⇒ \Rightarrow 矩阵 A + B F A+BF A+BF 不存在实部非负特征值, 即 A + B F A+BF A+BF 的特征值实部均小于零, 则 ( A , B ) (A,B) (A,B) 可镇定.
(注: 充分性和必要性中的 F F F 不一定是同一个)

(ii) ⇔ \Leftrightarrow (iii): “ ⇒ \Rightarrow ” 用反证法, 假设存在非零 x 1 x_1 x1 满足 x 1 ∗ A = x 1 ∗ λ x_1^*A = x_1^*\lambda x1A=x1λ Re λ ≥ 0 \text{Re}\lambda \geq 0 Reλ0, 但 x 1 ∗ B = 0 x_1^*B = 0 x1B=0, 则由 x 1 ∗ A = x 1 ∗ λ x_1^*A = x_1^*\lambda x1A=x1λ 可得 x 1 ∗ ( A − λ I ) = 0 x_1^*(A - \lambda I) = 0 x1(AλI)=0, 结合 x 1 ∗ B = 0 x_1^*B = 0 x1B=0 可知, x 1 ∗ ( A − λ I B ) = 0 x_1^*(A - \lambda I\quad B) = 0 x1(AλIB)=0, 于是 [ A − λ I B ] [A - \lambda I\quad B] [AλIB] 不满秩, 与(ii)矛盾. “ ⇐ \Leftarrow ” 用反证法, 假设对存在 Re λ ≥ 0 \text{Re}\lambda \geq 0 Reλ0 使得 [ A − λ I B ] [A-\lambda I\quad B] [AλIB] 行不满秩, 则存在非零向量 x ∗ x^* x 使得 x ∗ [ A − λ I B ] = 0 x^*[A - \lambda I\quad B] = 0 x[AλIB]=0, 即 x ∗ A = x ∗ λ x^*A = x^*\lambda xA=xλ x ∗ B = 0 x^*B = 0 xB=0, 矛盾.


本文中的定义定理来自文献 [1], 但在[1] 中只给出了定理1的详细证明.
参考文献:
[1] Kemin Zhou, Robust and Optimal Control, PRENTICE HALL, Englewo o d Cliffs, New Jersey 07632.

  • 10
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值