线性时不变系统可观 (observable) 与可检 (detectable) 的等价命题证明

为了能够在不登录或不付费的情况下查看本文,请移步至 https://www.cnblogs.com/beta2187/p/B1921.html 阅读本文。
本文是上一篇《线性时不变系统可镇定 (stabilizable) 等价命题证明》(https://blog.csdn.net/beta_2187/article/details/103852066) 的延续, 公式定义等的编号也按上一篇顺延.

考虑如下线性时不变系统:
x ˙ = A x + B u ( 1 ) y = C x + D u ( 2 ) \dot{x} = Ax + Bu \qquad (1) \\ y = Cx + Du \qquad (2) x˙=Ax+Bu(1)y=Cx+Du(2)
(注: 矩阵或向量上的 " * " 均代表转置)

定义 4 对任意 t 1 > 0 t_1>0 t1>0, 若初始状态 x ( 0 ) = x 0 x(0) = x_0 x(0)=x0 能够由输入 u ( t ) u(t) u(t) 和输出 y ( t ) y(t) y(t) 在区间 [ 0 , t 1 ] [0, t_1] [0,t1] 上的值唯一 确定, 则称由方程 (1) 和 (2) 或者矩阵对 ( C , A ) (C, A) (C,A) 所描述的动态系统是可观的, 否则该系统或 ( C , A ) (C, A) (C,A) 是不可观的.

定理 3 下列命题等价:

  • (i) ( C , A ) (C, A) (C,A) 可观;
  • (ii) 矩阵 W o ( t ) = ∫ 0 t e A ∗ τ C ∗ C e A τ d τ W_o(t) = \int_0^t e^{A^*\tau}C^*Ce^{A\tau} d\tau Wo(t)=0teAτCCeAτdτ 对任意 t > 0 t>0 t>0 是正定的;
  • (iii) 可观测性矩阵 O = [ C C A C A 2 ⋮ C A n − 1 ] \mathcal{O} = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix} O= CCACA2CAn1 是列满秩的, 或者 ⋂ i = 1 n Ker ( C A i − 1 ) = 0 \bigcap_{i=1}^n \text{Ker} (CA^{i-1}) = 0 i=1nKer(CAi1)=0;
  • (iv) 对所有的 λ ∈ C \lambda \in \mathbb{C} λC, 矩阵 ( A − λ I C ) \binom{A- \lambda I}{C} (CAλI) 是列满秩的;
  • (v) 设 λ \lambda λ y y y 分别是
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值