论文阅读 | Unifying Motion Deblurring and Frame Interpolation with Events

前言:最近打算好好的再读一些文章,自己不是去糊领域的,略微做了些笔记。

Unifying Motion Deblurring and Frame Interpolation with Events

论文:【here】
代码:【here】
补充材料:【here】

论文核心贡献点

1.提出了一个集插帧和去糊一体的网络,解决了插帧问题中运动模糊和去糊问题中的帧率不够的问题。( LEDVDI是级联的,不是一起生成的)
2.采用自监督的方案,可以用到更多的场景,不必受数据集限制

论文的核心架构

  • LDI网络(用于处理事件点)
  • Fusion 网络(用于融合事件点和模糊图像)
  • 损失函数设计

在这里插入图片描述

LDI网络架构设计

在这里插入图片描述
分别有四个相同的LDI网络,分别对两个模糊图像的曝光时间前后的事件进行处理
基于的原则是双积分模型,即最终LDI模型的输出为E(f,T),即事件在模糊帧和潜在帧之间的“”桥梁帧“”。
在这里插入图片描述
对于每个每个桥梁帧的处理,可以拆成f时刻前后两个部分,并且对于f时刻前的事件,进行反转,f时刻后的事件进行位移(位移使其从0时刻开始)
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

fusion网络架构设计

在这里插入图片描述
5路输入,其中中间的输入可以表示为
在这里插入图片描述
LDI和fusion的网络结构
在这里插入图片描述

损失函数设计

  • 模糊事件损失Blurry-event Loss.

在这里插入图片描述

  • 模糊尖锐损失Blurry-sharp Loss.

在这里插入图片描述

  • 尖锐事件损失Sharp-event Loss.
    在这里插入图片描述
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值