KM算法二分图完美匹配 模板

本文深入探讨了 Kuhn-Munkres (KM) 算法的实现细节,这是一种解决分配问题的有效方法,特别适用于寻找带权完全二分图中的最大权重匹配。文章通过具体的 C 语言代码示例解释了 KM 算法的工作原理,包括关键步骤如顶标调整和增广路径搜索。
摘要由CSDN通过智能技术生成
#include <stdio.h>
#include <string.h>
#define M 310
#define inf 0x3f3f3f3f

int n,nx,ny;
int lx[M],ly[M];    //lx,ly为顶标,nx,ny分别为x点集y点集的个数
int _visx[M],_visy[M],w[M][M],_slack[M],_link[M];

int DFS(int x)
{
    _visx[x] = 1;
    for (int y = 1;y <= ny;y ++)
    {
        if (_visy[y])
            continue;
        int t = lx[x] + ly[y] - w[x][y];
        if (t == 0)       //
        {
            _visy[y] = 1;
            if (_link[y] == -1||DFS(_link[y]))
            {
                _link[y] = x;
                return 1;
            }
        }
        else if (_slack[y] > t)  //不在相等子图中_slack 取最小的
            _slack[y] = t;
    }
    return 0;
}
int KM()
{
    int i,j;
    memset (_link,-1,sizeof(_link));
    memset (ly,0,sizeof(ly));
    for (i = 1;i <= nx;i ++)            //lx初始化为与它关联边中最大的
        for (j = 1,lx[i] = -inf;j <= ny;j ++)
            if (w[i][j] > lx[i])
                lx[i] = w[i][j];

    for (int x = 1;x <= nx;x ++)
    {
        for (i = 1;i <= ny;i ++)
            _slack[i] = inf;
        while (1)
        {
            memset (_visx,0,sizeof(_visx));
            memset (_visy,0,sizeof(_visy));
            if (DFS(x))     //若成功(找到了增广轨),则该点增广完成,进入下一个点的增广
                break;  //若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的数量增加。
                        //方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,
                        //所有在增广轨中的Y方点的标号全部加上一个常数d
            int d = inf;
            for (i = 1;i <= ny;i ++)
                if (!_visy[i]&&d > _slack[i])
                    d = _slack[i];
            for (i = 1;i <= nx;i ++)
                if (_visx[i])
                    lx[i] -= d;
            for (i = 1;i <= ny;i ++)  //修改顶标后,要把所有不在交错树中的Y顶点的_slack值都减去d
                if (_visy[i])
                    ly[i] += d;
                else
                    _slack[i] -= d;
        }
    }
    int res = 0;
    for (i = 1;i <= ny;i ++)
        if (_link[i] > -1)
            res += w[_link[i]][i];
    return res;
}
int main ()
{
    int i,j;
    while (scanf ("%d",&n)!=EOF)
    {
        nx = ny = n;
      //  memset (w,0,sizeof(w));
        for (i = 1;i <= n;i ++)
            for (j = 1;j <= n;j ++)
                scanf ("%d",&w[i][j]);
        int ans = KM();
        printf ("%d\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值