#include <stdio.h>
#include <string.h>
#define M 310
#define inf 0x3f3f3f3f
int n,nx,ny;
int lx[M],ly[M]; //lx,ly为顶标,nx,ny分别为x点集y点集的个数
int _visx[M],_visy[M],w[M][M],_slack[M],_link[M];
int DFS(int x)
{
_visx[x] = 1;
for (int y = 1;y <= ny;y ++)
{
if (_visy[y])
continue;
int t = lx[x] + ly[y] - w[x][y];
if (t == 0) //
{
_visy[y] = 1;
if (_link[y] == -1||DFS(_link[y]))
{
_link[y] = x;
return 1;
}
}
else if (_slack[y] > t) //不在相等子图中_slack 取最小的
_slack[y] = t;
}
return 0;
}
int KM()
{
int i,j;
memset (_link,-1,sizeof(_link));
memset (ly,0,sizeof(ly));
for (i = 1;i <= nx;i ++) //lx初始化为与它关联边中最大的
for (j = 1,lx[i] = -inf;j <= ny;j ++)
if (w[i][j] > lx[i])
lx[i] = w[i][j];
for (int x = 1;x <= nx;x ++)
{
for (i = 1;i <= ny;i ++)
_slack[i] = inf;
while (1)
{
memset (_visx,0,sizeof(_visx));
memset (_visy,0,sizeof(_visy));
if (DFS(x)) //若成功(找到了增广轨),则该点增广完成,进入下一个点的增广
break; //若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的数量增加。
//方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,
//所有在增广轨中的Y方点的标号全部加上一个常数d
int d = inf;
for (i = 1;i <= ny;i ++)
if (!_visy[i]&&d > _slack[i])
d = _slack[i];
for (i = 1;i <= nx;i ++)
if (_visx[i])
lx[i] -= d;
for (i = 1;i <= ny;i ++) //修改顶标后,要把所有不在交错树中的Y顶点的_slack值都减去d
if (_visy[i])
ly[i] += d;
else
_slack[i] -= d;
}
}
int res = 0;
for (i = 1;i <= ny;i ++)
if (_link[i] > -1)
res += w[_link[i]][i];
return res;
}
int main ()
{
int i,j;
while (scanf ("%d",&n)!=EOF)
{
nx = ny = n;
// memset (w,0,sizeof(w));
for (i = 1;i <= n;i ++)
for (j = 1;j <= n;j ++)
scanf ("%d",&w[i][j]);
int ans = KM();
printf ("%d\n",ans);
}
return 0;
}
KM算法二分图完美匹配 模板
最新推荐文章于 2020-09-24 20:58:55 发布
本文深入探讨了 Kuhn-Munkres (KM) 算法的实现细节,这是一种解决分配问题的有效方法,特别适用于寻找带权完全二分图中的最大权重匹配。文章通过具体的 C 语言代码示例解释了 KM 算法的工作原理,包括关键步骤如顶标调整和增广路径搜索。
摘要由CSDN通过智能技术生成