引言
在处理大语言模型时,因其对输入的token数量有限制,文本分割成为一个至关重要的任务。为了确保生成的文本块不会超过模型的token限制,我们需要使用与模型相同的tokenizer来计数和分割文本。在本文中,我们将探讨如何使用Tiktoken和其他工具来实现有效的文本分割。
主要内容
1. Tiktoken介绍
Tiktoken是由OpenAI创建的一个快速BPE(Byte Pair Encoding)tokenizer,能够准确估计OpenAI模型使用的tokens数量。它通过指定字符进行分割,并借助CharacterTextSplitter与RecursiveCharacterTextSplitter等工具实现分割。
2. 分割文本的方法
CharacterTextSplitter
可以使用Tiktoken的from_tiktoken_encoder
方法进行分割,但要注意,这种方法可能会生成比预期更大的块。
from langchain_text_splitters import CharacterTextSplitter
text_splitter = CharacterTextSplitter.from_tiktoken_encoder