[深入理解Annoy:高效的近似最近邻搜索工具]

引言

在大数据和人工智能领域,检索与某个查询点距离最近的数据点是一项常见且关键的任务。Annoy(Approximate Nearest Neighbors Oh Yeah)就是为此而生的一个高效工具。它能够通过构建分层的二叉树,在大规模数据集中快速进行最近邻搜索。本文将介绍如何使用Annoy,以及它在不同应用场景中的表现。

主要内容

Annoy的基本概念

Annoy是一个用C++编写并提供Python绑定的库,专门用于在空间中搜索与查询点相近的点。它通过构建只读的大型文件型数据结构来实现高效的共享数据索引,因此在性能和存储上具有突出的优势。然而,它的索引一旦构建完毕,就不允许再添加新的嵌入。因此,对于需要动态更新数据集的应用场景,可能需要考虑其他替代方案。

安装与基本使用

在使用Annoy之前,需要安装annoy库:

%pip install --upgrade --quiet annoy

然后,我们可以通过以下代码示例创建一个基于文本的向量存储:

from langchain_community.vectorstores import Annoy
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值