引言
在大数据和人工智能领域,检索与某个查询点距离最近的数据点是一项常见且关键的任务。Annoy(Approximate Nearest Neighbors Oh Yeah)就是为此而生的一个高效工具。它能够通过构建分层的二叉树,在大规模数据集中快速进行最近邻搜索。本文将介绍如何使用Annoy,以及它在不同应用场景中的表现。
主要内容
Annoy的基本概念
Annoy是一个用C++编写并提供Python绑定的库,专门用于在空间中搜索与查询点相近的点。它通过构建只读的大型文件型数据结构来实现高效的共享数据索引,因此在性能和存储上具有突出的优势。然而,它的索引一旦构建完毕,就不允许再添加新的嵌入。因此,对于需要动态更新数据集的应用场景,可能需要考虑其他替代方案。
安装与基本使用
在使用Annoy之前,需要安装annoy
库:
%pip install --upgrade --quiet annoy
然后,我们可以通过以下代码示例创建一个基于文本的向量存储:
from langchain_community.vectorstores import Annoy