高效管理 TensorFlow 2 GPU 显存的实用指南

前言

在使用 TensorFlow 2 进行训练或预测时,合理管理 GPU 显存至关重要。未能有效管理和释放 GPU 显存可能导致显存泄漏,进而影响后续的计算任务。在这篇文章中,我们将探讨几种方法来有效释放 GPU 显存,包括常规方法和强制终止任务时的处理方法。

一、常规显存管理方法
1. 重置默认图

在每次运行新的 TensorFlow 图时,通过调用 tf.keras.backend.clear_session() 来清除当前的 TensorFlow 图和释放内存。

import tensorflow as tf
tf.keras.backend.clear_session()
2. 限制 GPU 显存使用

通过设置显存使用策略,可以避免 GPU 显存被占用过多。

  • 按需增长显存使用

    import tensorflow as tf
    
    gpus = tf.config.experimental.list_physical_devices('GPU')
    if gpus:
        try:
            for gpu in gpus:
                tf.config.experimental.set_memory_growth(gpu, True)
        except RuntimeError as e:
            print(e)
    
  • 限制显存使用量

    import tensorflow as tf
    
    gpus = tf.config.experimental.list_physical_devices('GPU')
    if gpus:
        try:
            tf.config.experimental.set_virtual_device_configuration(
                gpus[0],
                [tf.config.experimental.VirtualDeviceConfiguration
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值