Pytorch基本操作流程: 七步成诗

Pytorch的基本使用流程总结为七个步骤,方便理解。这里省去了部分细节。

PS: 内容纯属个人理解,难免有错误,告知即改!

Pytorch 七步成诗

  • 第一步 : 定义module模块 ,即定义网络

    generator = GeneratorDRRN()

  • 第二步: 定义优化器,并告知优化器,模型的哪些参数需要学习

    optim_generator = optim.Adam(generator.parameters(), lr=opt.generatorLR)

  • 第三步: 定义损失函数:

    content_criterion = nn.MSELoss()

  • 第四步: 模型前馈运算

    output = generator(input)

  • 第五步: 计算损失

    generator_content_loss = content_criterion(output, target)

  • 第六步:计算梯度,基于损失反向计算梯度。注意梯度是累积的。

    generator.zero_grad()

    generator_content_loss .backward()

  • 第七步:更新参数

    optim_generator.step()

补充1 简单图示

在这里插入图片描述

补充2 优化器

优化器

for input, target in dataset:
    # 清空梯度数据 
    optimizer.zero_grad()
    # 推理
    output = model(input)
    # 计算loss
    loss = loss_fn(output, target)
    # 计算梯度
    loss.backward()
    # 更新参数
    optimizer.step()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值