网络结构:
28*28个输入单元,200个中间单元,10个输出单元
代码:
# -*- coding: utf-8 -*-
"""
Created on Fri May 17 19:39:39 2019
@author: 666
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#输入数据集
mnist = input_data.read_data_sets("F:/AI/AItest/MNIST_data",one_hot=True)
#定义每个批次的大小
batch_size = 100
#计算共有多少个批次
n_batch = mnist.train.num_examples
#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
#创建简单神经网络
#输入784神经元,中间层为200个单元,输出10个神经元
#定义中间层
W1 = tf.Variable(tf.zeros([784,200]))
b1 = tf.Variable(tf.zeros([200]))
L1 = tf.nn.relu(tf.matmul(x,W1) + b1)
#定义输出层
W =tf.Variable(tf.zeros([200,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(L1,W)+b)
# 二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
#判断预测值和正确的值是否一样
#tf.argmax(a,b),a是一个一维张量,1是维度,就是返回a的最大值
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
#求准确率 cast是转换数据类型,将bool转成float32
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(init)
for epoch in range(21):
for batch in range(n_batch):
#batch_xs保存数据,batch_ys保存标签
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print("Iter " + str(epoch) +", Testing Accuracy "+ str(acc))
仅仅是为了熟悉如何构建网络的代码,忽略准确率。
改进:更改了变量初始化的方式,使用了dropout
# -*- coding: utf-8 -*-
"""
Created on Tue May 21 19:10:24 2019
@author: miaow
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#输入数据集
mnist = input_data.read_data_sets("F:/AI/AItest/MNIST_data",one_hot=True)
#定义每个批次的大小
batch_size = 100
#计算共有多少个批次
n_batch = mnist.train.num_examples
#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32)
#定义第一层
W1 =tf.Variable(tf.truncated_normal([784,2000],stddev=0.1))
b1 = tf.Variable(tf.zeros([2000]+0.1))
L1 = tf.nn.tanh(tf.matmul(x,W1)+b1)
L1_drop = tf.nn.dropout(L1,keep_prob)
#定义第er层
W2 =tf.Variable(tf.truncated_normal([2000,2000],stddev=0.1))
b2 = tf.Variable(tf.zeros([2000]+0.1))
L2 = tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)
L2_drop = tf.nn.dropout(L2,keep_prob)
#定义输出层
W3 =tf.Variable(tf.zeros([2000,10]))
b3 = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(L2_drop,W)+b)
# 二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
#判断预测值和正确的值是否一样
#tf.argmax(a,b),a是一个一维张量,1是维度,就是返回a的最大值
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
#求准确率 cast是转换数据类型,将bool转成float32
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(init)
for epoch in range(21):
for batch in range(n_batch):
#batch_xs保存数据,batch_ys保存标签
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0})
test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
train_acc = sess.run(accuracy,feed_dict={x:mnist.rain.images,y:mnist.train.labels})
print("Iter " + str(epoch) +", Testing Accuracy "+ str(test_acc)+", Training Accuracy "+ str(train_acc))