人脸识别之活体检测

感谢@刘明峰 @卢海峰 @徐桦 我的同事们所做的工作

一、任务目标

判断捕捉到的人脸是真实人脸,还是伪造的人脸攻击

二、应用场景

金融支付、门禁、打卡机等应用场景

三、难点

  • 攻击源分布过于广泛
  • 不同攻击源之间差距不明显
  • 使用场景限制检测方法
  • 当前开放样本数据不足

四、解决方案

目前主流的活体解决防范分为配合式和非配合式:

  • 配合式活体需要用户根据提示做出相应的动作从而完成判别
  • 非配合式活体在用户无感的情况下直接进行活体检测,具有更好的用户体验

本文主要针对的是非配合式活体所尝试的解决方法

五、定义问题

5.1 分类问题

二分类问题(真或假)或者多分类问题(真人、纸张、屏幕等)

Reference:2019 FeatherNets: Convolutional Neural Networks as Light as Feather for Face Anti-spoofing
Pipeline:
整体框架
Innovative Points;

  • 提出了一个轻量级的CNN框架FeatherNet(0.35M),准确率更高,计算代价更小
  • 提出了Streaming Module模块可用来替换Global Average Pooling和fully connected layer.原因是人脸任务中不适合用GAP,因为他们的特征并不是等价的如上图对于识别来说,蓝色块应该要比红色块更重要。
  • 设计了一种新的分类器融合结构用于融合多模态数据
    Loss:
    focal loss

5.2 假体攻击问题

活体检测的主要难点在于假体的攻击类型是一个开集问题,因而当作分类问题看待时很难覆盖所有的假体类型,分类边界也很难确定。

Reference1:
Learning Generalized Spoof Cues for Face Anti-spoofing

这篇文章从异常检测的角度来解决活体问题,基于这样一个假设:所有的活体样本都具有某种共同的属性,属于一个闭集,而所有的攻击样本是一个开集

Pipeline:
在这里插入图片描述

文章的主要贡献有三个点:

  • 定义了一个spoof cue map来表征活体和假体之间的difference
  • 网络结构上采用U-Net作为spool cue map的生成器
  • 用Triplet loss, Regression loss, Classification loss作为监督

Reference2:Deep Anomaly Detection for Generalized Face Anti-spoofing
这篇文章同样的从异常检测的角度出发解决活体检测问题

Pipeline:
在这里插入图片描述
作者设计了一种新的loss,称之为Triplet Focal Loss,

L = − ∑ l o g e D ( a , n ) e D ( a , p ) + e D ( a , n ) + λ ∑ m a x ( 0 , e D ( a , p ) σ − e D ( a , n ) σ + m ) L=−∑log\frac{e^{D(a,n)} } {e^{D(a,p)}+e^{D(a,n)}}+λ∑max(0,e^\frac{D(a,p)}σ−e^\frac{D(a,n)}σ+m) L=logeD(a,p)+eD(a,n)eD(a,n)+λmax(0,eσD(a,p)eσD(a,n)+m)

安利一个博客:https://www.cnblogs.com/aoru45/p/13192969.html#_lab2_0_0

包含上述两篇假体攻击的论文总结,作者写的很不错~

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值