洛谷 P5176 公约数 题解

博客园同步

原题链接

我天哪 大大的庆祝一下:

数论黑题 T 1 T1 T1 达成!

激动地不行

记住套路:乱推 gcd ⁡ \gcd gcd,欧拉筛模板,然后乱换元,乱换式子,完了整除分块,欧拉筛和前缀和就解决了!

∑ i = 1 n ∑ j = 1 m ∑ k = 1 p gcd ⁡ ( i ⋅ j , i ⋅ k , j ⋅ k ) × gcd ⁡ ( i , j , k ) × ( gcd ⁡ ( i , j ) gcd ⁡ ( i , k ) × gcd ⁡ ( j , k ) + gcd ⁡ ( i , k ) gcd ⁡ ( i , j ) × gcd ⁡ ( j , k ) + gcd ⁡ ( j , k ) gcd ⁡ ( i , j ) × gcd ⁡ ( i , k ) ) \sum_{i=1}^n\sum_{j=1}^m\sum_{k=1}^p\gcd(i\cdot j,i\cdot k,j\cdot k)\times \gcd(i,j,k)\times \left(\frac{\gcd(i,j)}{\gcd(i,k)\times \gcd(j,k)}+\frac{\gcd(i,k)}{\gcd(i,j)\times \gcd(j,k)}+\frac{\gcd(j,k)}{\gcd(i,j)\times \gcd(i,k)}\right) i=1nj=1mk=1pgcd(ij,ik,jk)×gcd(i,j,k)×(gcd(i,k)×gcd(j,k)gcd(i,j)+gcd(i,j)×gcd(j,k)gcd(i,k)+gcd(i,j)×gcd(i,k)gcd(j,k))

= ∑ i = 1 n ∑ j = 1 m ∑ k = 1 p gcd ⁡ ( i , j ) × gcd ⁡ ( i , k ) × gcd ⁡ ( j , k ) gcd ⁡ ( i , j , k ) × gcd ⁡ ( i , j , k ) × ( gcd ⁡ ( i , j ) gcd ⁡ ( i , k ) × gcd ⁡ ( j , k ) + gcd ⁡ ( i , k ) gcd ⁡ ( i , j ) × gcd ⁡ ( j , k ) + gcd ⁡ ( j , k ) gcd ⁡ ( i , j ) × gcd ⁡ ( i , k ) ) = \sum_{i=1}^n \sum_{j=1}^m \sum_{k=1}^p \frac{\gcd(i,j) \times \gcd(i,k) \times \gcd(j,k)}{\gcd(i,j,k)} \times \gcd(i,j,k) \times \left(\frac{\gcd(i,j)}{\gcd(i,k)\times \gcd(j,k)}+\frac{\gcd(i,k)}{\gcd(i,j)\times \gcd(j,k)}+\frac{\gcd(j,k)}{\gcd(i,j)\times \gcd(i,k)}\right) =i=1nj=1mk=1pgcd(i,j,k)gcd(i,j)×gcd(i,k)×gcd(j,k)×gcd(i,j,k)×(gcd(i,k)×gcd(j,k)gcd(i,j)+gcd(i,j)×gcd(j,k)gcd(i,k)+gcd(i,j)×gcd(i,k)gcd(j,k))

= ∑ i = 1 n ∑ j = 1 m ∑ k = 1 p gcd ⁡ ( i , j ) 2 + gcd ⁡ ( i , k ) 2 + gcd ⁡ ( j , k ) 2 = \sum_{i=1}^n \sum_{j=1}^m \sum_{k=1}^p \gcd(i,j)^2 + \gcd(i,k)^2 + \gcd(j,k)^2 =i=1nj=1mk=1pgcd(i,j)2+gcd(i,k)2+gcd(j,k)2

= p × ∑ i = 1 n ∑ j = 1 m gcd ⁡ ( i , j ) 2 + m × ∑ i = 1 n ∑ k = 1 p gcd ⁡ ( i , k ) 2 + n × ∑ j = 1 m ∑ k = 1 p gcd ⁡ ( j , k ) 2 = p \times \sum_{i=1}^n \sum_{j=1}^m \gcd(i,j)^2 + m \times \sum_{i=1}^n \sum_{k=1}^p \gcd(i,k)^2 + n \times \sum_{j=1}^m \sum_{k=1}^p \gcd(j,k)^2 =p×i=1nj=1mgcd(i,j)2+m×i=1nk=1pgcd(i,k)2+n×j=1mk=1pgcd(j,k)2

下面我们只需考虑 ∑ i = 1 n ∑ j = 1 m gcd ⁡ ( i , j ) 2 \sum_{i=1}^n \sum_{j=1}^m \gcd(i,j)^2 i=1nj=1mgcd(i,j)2的值即可。

∑ i = 1 n ∑ j = 1 m gcd ⁡ ( i , j ) 2 \sum_{i=1}^n \sum_{j=1}^m \gcd(i,j)^2 i=1nj=1mgcd(i,j)2

= ∑ d = 1 min ⁡ ( n , m ) d 2 ∑ i = 1 n ∑ j = 1 m [ gcd ⁡ ( i , j ) = = d ] = \sum_{d=1}^{\min(n,m)} d^2 \sum_{i=1}^n \sum_{j=1}^m [\gcd(i,j) == d] =d=1min(n,m)d2i=1nj=1m[gcd(i,j)==d]

= ∑ d = 1 min ⁡ ( n , m ) d 2 ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ g c d ( i , j ) = = 1 ] = \sum_{d=1}^{\min(n,m)} d^2 \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{d} \rfloor} [gcd(i,j) == 1] =d=1min(n,m)d2i=1dnj=1dm[gcd(i,j)==1]

这里我们要知道 ∑ i = 1 a ∑ j = 1 b [ gcd ⁡ ( i , j ) = = 1 ] \sum_{i=1}^a \sum_{j=1}^b [\gcd(i,j) == 1] i=1aj=1b[gcd(i,j)==1].

然后开始莫比乌斯反演。

令:

f x = ∑ i = 1 a ∑ j = 1 b [ gcd ⁡ ( i , j ) = = x ] f_x = \sum_{i=1}^a \sum_{j=1}^b [\gcd(i,j) == x] fx=i=1aj=1b[gcd(i,j)==x]

F x = ∑ i = 1 a ∑ j = 1 b [ x ∣ gcd ⁡ ( i , j ) ] F_x = \sum_{i=1}^a \sum_{j=1}^b [x | \gcd(i,j)] Fx=i=1aj=1b[xgcd(i,j)]

显然有:

F x = ∑ x ∣ d f d F_x = \sum_{x|d} f_d Fx=xdfd

f 1 = ∑ d = 1 F d × μ d f_1 = \sum_{d=1} F_d \times \mu_d f1=d=1Fd×μd

= ∑ d = 1 min ⁡ ( n , m ) μ d × ⌊ n d ⌋ × ⌊ m d ⌋ = \sum_{d=1}^{\min(n,m)} \mu_d \times \lfloor \frac{n}{d} \rfloor \times \lfloor \frac{m}{d} \rfloor =d=1min(n,m)μd×dn×dm

回到原式:

= ∑ d = 1 min ⁡ ( n , m ) d 2 ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ g c d ( i , j ) = = 1 ] = \sum_{d=1}^{\min(n,m)} d^2 \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{d} \rfloor} [gcd(i,j) == 1] =d=1min(n,m)d2i=1dnj=1dm[gcd(i,j)==1]

= ∑ d = 1 min ⁡ ( n , m ) d 2 ∑ g = 1 min ⁡ ( ⌊ n d ⌋ , ⌊ m d ⌋ ) μ d ⌊ n g × d ⌋ ⌊ m g × d ⌋ = \sum_{d=1}^{\min(n,m)} d^2 \sum_{g=1}^{\min(\lfloor \frac{n}{d} \rfloor,\lfloor \frac{m}{d} \rfloor)} \mu_d \lfloor \frac{n}{g \times d} \rfloor \lfloor \frac{m}{g \times d} \rfloor =d=1min(n,m)d2g=1min(dn,dm)μdg×dng×dm

T = g × d T = g \times d T=g×d ,换 d ∣ T d|T dT 枚举。

= ∑ T = 1 min ⁡ ( n , m ) ⌊ n T ⌋ × ⌊ m T ⌋ × ∑ d ∣ T d 2 μ ⌊ T d ⌋ = \sum_{T=1}^{\min(n,m)} \lfloor \frac{n}{T} \rfloor \times \lfloor \frac{m}{T} \rfloor \times \sum_{d|T} d^2 \mu{\lfloor \frac{T}{d} \rfloor} =T=1min(n,m)Tn×Tm×dTd2μdT

对于前面的,我们整除分块。

后面的,是个卷积,两个还都是积性函数,用欧拉筛一下。

(欧拉筛能解决所有的积性函数。如果不能,就再筛一遍。)

提醒一句:我们是要对 n n n , m m m p p p 求三次,不要只求一次啊。

突然感觉黑题也不怎难,会了套路就好

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const ll MOD=1e9+7;
const int N=2e7+1;

inline ll read(){char ch=getchar();int f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
	ll x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;}

ll T,n,m,p,cnt=0; bool h[N];
ll prime[N],sum[N],f[N];

inline ll solve(ll n,ll m) {
	ll ans=0;
	for(ll i=1,t;i<=min(n,m);i=t+1) {
		t=min(n/(n/i),m/(m/i));
		ans=(ans+(n/i)*(m/i)%MOD*((sum[t]-sum[i-1]+MOD)%MOD)%MOD)%MOD;
	} return ans;
} //整除分块

inline void Euler() {
	f[1]=1;
	for(ll i=2;i<N;i++) {
		if(!f[i]) prime[++cnt]=i,f[i]=(i*i%MOD-1+MOD)%MOD;
		for(ll j=1;j<=cnt && i*prime[j]<N;j++) {
			f[i*prime[j]]=1;
			if(i%prime[j]==0) {
				f[i*prime[j]]=f[i]*prime[j]%MOD*prime[j]%MOD;
				break;
			} else f[i*prime[j]]=f[i]*f[prime[j]]%MOD;
		}
	}
	for(ll i=1;i<N;i++) sum[i]=(sum[i-1]+f[i])%MOD;
} //欧拉筛,做前缀和

int main(){
	Euler(); T=read(); while(T--) {
		n=read(),m=read(),p=read();
		printf("%lld\n",(p*solve(n,m)%MOD+m*solve(n,p)%MOD+n*solve(m,p)%MOD)%MOD);
	} //别忘了3次轮换
	return 0;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值