前置知识:
二分,对数。
简要题意:
求 x x x^x xx 的位数超过或达到 n n n 位的最小的 x x x.
n ≤ 2 × 1 0 9 n \leq 2 \times 10^9 n≤2×109.
首先, x x x^x xx 与 x x x 是正比例关系,具有单调性。朴素来说就是 x x x^x xx 随 x x x 增大而增大,主要因为 x > 1 x>1 x>1.(答案不可能是 1 1 1 啊)
具有单调性的函数可以进行 二分答案。 可以用 O ( log n ) \mathcal{O}(\log n) O(logn) 的时间(其实不到 log \log log,因为 x x x^x x

博客介绍了如何解决一道编程题目,P2759 奇怪的函数,要求找到最小的 x 使 xx 的位数超过或等于给定的 n 位。通过分析问题的单调性,可以使用二分搜索在 O(logn) 时间复杂度内求解。关键在于利用数学技巧,如 log10 函数,来快速计算数字的位数,实现 O(1) 时间内的验证。最终实现了满分解决方案。
最低0.47元/天 解锁文章
442

被折叠的 条评论
为什么被折叠?



