积分入门笔记

这篇博客介绍了极限和积分的基础知识,从极限的概念出发,解释了无穷大、求极限的方法和连续函数的定义。接着,它探讨了导数(微分)的原理,包括求导入门、进阶和导数的应用,如判断极值。最后,文章阐述了积分的入门和进阶概念,包括定积分的性质,并通过实例展示了积分如何表示曲线下方的面积。
摘要由CSDN通过智能技术生成

学习链接

极限

引入极限

简单点就是趋近的数值。

比方说有 f ( x ) = x 2 − 1 x − 1 f(x) = \frac{x^2-1}{x-1} f(x)=x1x21,如何知道 f ( 1 ) f(1) f(1) 的值?

显然我们不能直接求,于是可以换一种方法:

趋近法。

假设我们让 x x x 从小到大趋近 1 1 1,那么:

x x x f ( x ) f(x) f(x)
0.5 0.5 0.5 1.5 1.5 1.5
0.9 0.9 0.9 1.9 1.9 1.9
0.99 0.99 0.99 1.99 1.99 1.99
0.999 0.999 0.999 1.999 1.999 1.999

可以知道 f ( 1 ) = 2 f(1)=2 f(1)=2 的事实。但是我们不能说“当 x = 1 x=1 x=1 时, f ( x ) = 2 f(x)=2 f(x)=2”,因为 x x x 无法取到 1 1 1.

于是我们可以这样说:

lim ⁡ x → 1 x 2 − 1 x − 1 = 2 \lim \limits_{x \rightarrow 1} \frac{x^2-1}{x-1} = 2 x1limx1x21=2

不能说 x = 1 x=1 x=1 是多少,我们应说“不管那个值具体是什么, x x x 趋近于 1 1 1 时答案就趋近于 2 2 2”,正确理解等于号的含义。

事实上我们犯了一个错误。求极限是不能只从一边的,因为有的时候两边趋近的答案不一样。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7FN7U9dJ-1624976567074)(https://www.shuxuele.com/calculus/images/discontinuous-function.svg)]

一般的极限不存在的,可见。

还有说明一个误区:哪怕那个点明确可以取到,只要符合极限的定义,就可以。你也可以说:

lim ⁡ x → 1 ( x + 1 ) = 2 \lim \limits_{x \rightarrow 1} (x+1) = 2 x1lim(x+1)=2

这没有任何问题。

无穷大

∞ \infty 表示无穷大。但是我们需要注意一些事项。

无穷大

1 ∞ = 0 \frac{1}{\infty} = 0 1=0,这是对的吗?

这是错的。 ∞ \infty 不是数,不可以参与运算,这是无意义的。

但是我们知道一个事实:

x x x 越来越大时, 1 x \frac{1}{x} x1 越来越趋近于 0 0 0.

但是我们无法描述“越来越大”是趋近于多少,于是引进了 ∞ \infty 来表示。

因此:

lim ⁡ x → ∞ 1 x = 0 \lim \limits_{x \rightarrow \infty} \frac{1}{x} = 0 xlimx1=0

一个特殊的公式

lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim \limits_{x \rightarrow \infty} \big(1+\frac{1}{x}\big)^x = e xlim(1+x1)x=e

求极限

一、代入法

很显然,对于一些函数是生效的,但是对于一大部分函数不生效。

二、因式分解法

lim ⁡ x → 1 x 2 − 1 x − 1 = lim ⁡ x → 1 ( x + 1 ) \lim \limits_{x \rightarrow 1} \frac{x^2-1}{x-1} = \lim \limits_{x \rightarrow 1} (x+1) x1limx1x21=x1lim(x+1)

再用代入法可知为 2 2 2.

判断函数趋近

考虑对于 f ( x ) f(x) f(x),如何判断 x → ∞ x \rightarrow \infty x 时, f ( x ) f(x) f(x) 趋近于 0 , − ∞ , ∞ 0,-\infty,\infty 0,,(也有可能是别的值)?

形如 1 x \frac{1}{x} x1 的趋近于 0 0 0,很好判断。

剩下的,直接看最高次系数的正负。正则趋近无穷大,负则趋近负无穷大。

如果有分母,最高次次数一致时,把分子分母最高次的系数相除就可以,这个值就是函数的趋近值( x x x 无穷大时)。

因此:

lim ⁡ x → ∞ 4 x 3 + 2 x 5 − 2 x 3 = − 2 \lim \limits_{x \rightarrow \infty} \frac{4x^3 + 2x}{5-2x^3} = -2 xlim52x34x3+2x=2

如果不一致,那么看系数相除的正负,同理判断趋近正(负)无穷大即可。

因此:

lim ⁡ x → ∞ 4 x 3 + 2 x 5 − 2 x 2 = − ∞ \lim \limits_{x \rightarrow \infty} \frac{4x^3 + 2x}{5-2x^2} = -\infty xlim52x24x3+2x=

其实原因很简单, x x x 趋近无穷时,因为系数是常数,最后整式的值一定是最高次项,所以仅考虑最高次项就可以判断函数的趋近值。

严格的证明

现在我们需要考虑,如何严格证明极限的大小?先前我们给出极限的定义并不官方,而多是口语化。大家理解了之后,我们来考虑真正的极限。

数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。——百度百科

假设我们现在想要描述:

  • x x x 趋近于 a a a 时, f ( x ) f(x) f(x) 趋近于 L L L.

考虑用作差法表示“趋近”的含义。也就是:

∣ x − a ∣ < δ |x-a|<\delta xa<δ 时, ∣ f ( x ) − L ∣ < ϵ |f(x)-L| < \epsilon f(x)L<ϵ

严格表示趋近(极限)的方式:

对于任何 δ > 0 \delta > 0 δ>0,有 ϵ > 0 \epsilon>0 ϵ>0,从而使得当 ∣ x − a ∣ < δ |x-a|<\delta xa

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值