【机器学习】图解SVM中gamma和c参数的作用

引言

上一篇博客主要讲解了一下svm的基本原理,然而在实际工程中解决一些分类问题时,我们需要调整c和gamma的值进行模型的训练,然后根据测试的precision,recall以及f1_score来进行模型的效果的判断。

所谓的precision,recall和f1_score所代表的意义如下:

precision:表示测试的准确度。具体等于正确预测个数(TP) / 被预测正确的个数(FP+FN)

recall:表示预测的召回率。具体等于正确预测的个数 / 预测的总个数

f1_score=2*precision*recall/(precision+recall),相当于对精度和召回率的一个综合评测

在使用svm对数据进行训练的时候,为了使得在模型准确度达到一定的要求的条件下,模型的泛化能力尽量更好,也就是鲁棒性要好,防止在训练过程中模型的过拟合。因此我们需要不断的调整gamma和c的值,并对数据不断地进行交叉验证,以找到合适的gamma和c的值,对应的训练的结果w和b作为最终的结果进行新样本的预测。

参数c和gamma的作用

我们通过下图详解参数c的作用,首先我们以一个简单的线性分类器为例,上一个博客中我们知道影响分类器的主要因素是支持向量,即虚线上的样本,如下图可知:

                      

但当正负样本的分布在如下情况时,需要引入核函数对数据进行高维度的映射,具体如下图:

    

实线为决策平面,虚线上的样本为支持向量。

参数c

上图中我们知道决策平面与支持向量之间有一个距离差,而在实际工程中,参数c正是影响了支持向量与决策平面之间的距离,具体效果为:

c越大,分类越严格,不能有错误

c越小,意味着有更大的错误容忍度

具体可以通过下图展示:

        

c越大分类结果越好相应的泛化能力降低,c越小,我们的决策边界更大一些,即在训练时容忍一些样本的误差,拿一些边界更宽的样本作为支持向量。

参数gamma

参数gamma主要是对低维的样本进行高度度映射,gamma值越大映射的维度越高,训练的结果越好,但是越容易引起过拟合,即泛化能力低。具体效果如下图表示:

               

当gamma较大时,决策平面如一个梅花,分类的效果好,但是模型的鲁棒性不一定高。

因此我们需要合理的选择c和gamma的值,使得在训练结果准确的同时,测试结果同样相对高,即鲁棒性能力强。

总结

在实际工程应用中,我们需要不断的调整gamma和c的值,并对数据不断地进行交叉验证,使得模型的预测结果更高。此时对应的训练结果w和b作为svm最终的训练结果。

 

 

 

 

 

 

 

 

 

 

 

支持向量机(SVM)是一种强大的分类算法,尤其适合于小样本、非线性及高维数据的分类问题。在Python中,我们通常利用sklearn库的SVM模块来实现非线性分类器。非线性SVM通过引入核函数来处理非线性可分的数据,其中高斯核(Radial Basis Function, RBF)是一种常用的核函数。为了优化模型性能,我们需要调整参数gammaC,它们分别控制着高斯核的宽度模型的复杂度。下面是使用sklearn实现非线性SVM分类器并调整参数的步骤方法: 参考资源链接:[SVM通俗理解与Python实现](https://wenku.csdn.net/doc/1a5go87qb2?spm=1055.2569.3001.10343) 1. 首先,你需要安装sklearn库,如果尚未安装,可以通过pip安装:`pip install scikit-learn`。 2. 接下来,导入必要的模块,创建一个SVM分类器实例,并指定使用RBF核函数。你可以通过调整gamma参数来改变核函数的影响范围,以及通过调整C参数来控制模型的平滑度,即对错误分类的容忍程度。 ```python from sklearn import svm from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 创建非线性可分的数据集 X, y = make_classification(n_samples=100, n_features=20, n_informative=15, n_redundant=5, random_state=42) # 划分训练集测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 创建RBF核的SVM分类器实例,并设置参数gammaC clf = svm.SVC(kernel='rbf', gamma=0.1, C=1.0) # 使用训练数据拟合模型 clf.fit(X_train, y_train) # 预测测试集 y_pred = clf.predict(X_test) # 评估模型性能 print( 参考资源链接:[SVM通俗理解与Python实现](https://wenku.csdn.net/doc/1a5go87qb2?spm=1055.2569.3001.10343)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值