推荐算法之TF-IDF的理解以及代码实现

本文介绍了TF-IDF算法的基本思想,强调了词频和逆文档频率在文本分类中的作用。通过TF-IDF计算公式展示了如何衡量一个词的重要性,并提供了Python代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.TF-IDF(Term  Frequency-Inverse Document Frequency)词频逆文档词频

主要思想:

如果某个词在一篇文章中出现的频率(TF)高,并且在其他文章中很少出现,则该词具有良好的区分能力,它的价值就会比较大,适合用来分类

TF(词频):一个词在一个文档中出现的频率

       为了避免长短文不同造成的偏向,将每个词进行归一化

                                                                                                        TFi,j = n_(i,j)/n_(*,j)

表示词i在文档j中出现的次数, 表示文档j中的总词数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值