范数学习总结

L0范数

即为非零元素的个数。L0范数表示的是向量中非零元素的个数。L0范数的这个属性,使其非常适用于机器学习中的稀疏编码。在特征选择中,通过最小化L0范数来寻找最少最优的稀疏特征项。但是,L0范数的最小化问题是NP难问题。而L1范数是L0范数的最优凸近似,它比L0范数要更容易求解。因此,优化过程将会被转换为更高维的范数

 

L1范数

L1范数为向量中各个元素绝对值之和,在机器学习特征选择中,稀疏规则化能够实现特征的自动选择。一般来说,输入向量X的大部分元素(也就是特征)都是和最终的输出Y没有关系或者不提供任何信息的,在最小化目标函数的时候考虑这些额外的特征,虽然可以获得更小的训练误差,但在预测新的样本时,这些没用的信息反而会被考虑,从而干扰了对正确Y的预测。稀疏规则化算子的引入就是为了完成

另一个青睐于稀疏的理由是,模型更容易解释。例如患某种病的概率是y,然后我们收集到的数据x是1000维的,也就是我们需要寻找这1000种因素到底是怎么影响患上这种病的概率的。假设这是个回归模型:

 

当然了,为了让y限定在的范围,一般还得加个Logistic函数。 通过学习,如果最后学习到的就只有很少的非零元素,例如只有5个非零的,那么我们就有理由相信,这些对应的特征在患病分析上面提供的信息是巨大的,决策性的。也就是说,患不患这种病只和这5个因素有关,那医生就好分析多了。但如果1000个都非0,医生面对这1000种因素只能一脸懵逼不知如何是好。

特征自动选择,它会学习地去掉这些没有信息的特征,也就是把这些特征对应的权重置为0。

L2范数

L2范数是最常用的范数了,我们用的最多的度量距离欧氏距离就是一种L2范数。在回归里面,有人把加了L2范数项的回归c称为“岭回归”(Ridge Regression),有人也叫它“权值衰减weight decay”。它被广泛的应用在解决机器学习里面的过拟问题合。

为什么L2范数可以防止过拟合?回答这个问题之前,我们得先看看L2范数实际上是什么。

L2范数是指向量各元素的平方和然后求平方根。我们让L2范数的规则项最小,可以使得的每个元素都很小,都接近于0,但与L1范数不同,它不会让它等于0,而是接近于0,这是有很大的区别的。而越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象。为什么越小的参数说明模型越简单?因为当限制了参数很小,实际上就限制了多项式某些分量的影响很小(看上面线性回归的模型的那个拟合的图),这样就相当于减少参数个数。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值