weka –Apriori算法 关联规则挖掘实验
一、Apriori算法参数含义
本次共进行了9组实验,使用了weka安装目录data文件夹下的contact-lenses.arff数据。
ToolsàArffViewer,打开contact-lenses,可以看到实验数据contact-lenses共有24条记录,5个属性值。具体内容如下:
结合实验结果阐释下列12个参数的含义
1. car 如果设为真,则会挖掘类关联规则而不是全局关联规则。
2. classindex 类属性索引。如果设置为-1,最后的属性被当做类属性。
3. delta 以此数值为迭代递减单位。不断减小支持度直至达到最小支持度或产生了满足数量要求的规则。
4. lowerBoundMinSupport 最小支持度下界。
5. metricType 度量类型。设置对规则进行排序的度量依据。可以是:置信度(类关联规则只能用置信度挖掘),提升度(lift),杠杆率(leverage),确信度(conviction)。
在 Weka中设置了几个类似置信度(confidence)的度量来衡量规则的关联程度,它们分别是:
a) Lift : P(A,B)/(P(A)P(B)) Lift=1时表示A和B独立。这个数越大(>1),越表明A和B存在于一个购物篮中不是偶然现象,有较强的关联度.
b) Leverage :P(A,B)-P(A)P(B)
Leverage=0时A和B独立,Leverage越大A和B的关系越密切
c) Conviction:P(A)P(!B)/P(A,!B) (!B表示B没有发生) Conviction也是用来衡量A和B的独立性。从它和lift的关系(对B取反,代入Lift公式后求倒数)可以看出,这个值越大, A、B越关联。
6. minMtric 度量的最小值。
7. numRules 要发现的规则数。
8. outputItemSets 如果设置为真,会在结果中输出项集。
9. removeAllMissingCols 移除全部为缺省值的列。
10. significanceLevel 重要程度。重要性测试(仅用于置信度)。
11. upperBoundMinSupport 最小支持度上界。 从这个值开始迭代减小最小支持度。
12. verbose 如果设置为真,则算法会以冗余模式运行。
二、实验结果及分析
1. 以其中一组实验为例做详细分析
具体参数设置如下图:
完整的实验结果输出及具体分析
=== Run information === // 实验运行信息
Scheme: weka.associations.Apriori -I -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.5 -S -1.0 -c -1
Relation: contact-lenses //数据的名称 contact-lenses
Instances: 24 //数据的记录数 24
Attributes: 5 //属性数目 5以及各属性名称
age
spectacle-prescrip
astigmatism
tear-prod-rate
contact-lenses
=== Associator model (full training set) ===
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% scheme -所选的关联规则挖掘方案: Apriori算法
% 算法的参数设置:-I -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.5 -S -1.0 -c -1 ;
% 各参数依次表示:
% I - 输出项集,若设为false则该值缺省;
% N 10 - 规则数为10;
% T 0 – 度量单位选为置信度,(T1-提升度,T2杠杆率,T3确信度);
% C 0.9 – 度量的最小值为0.9;
% D 0.05 - 递减迭代值为0.05;
% U 1.0 - 最小支持度上界为1.0;
% M 0.5 - 最小支持度下届设为0.5;
% S -1.0 - 重要程度为-1.0;
% c -1 - 类索引为-1输出项集设为真
% (由于car, removeAllMissingCols, verbose都保持为默认值False,因此在结果的参数设置为缺省,若设为True,则会在结果的参数设置信息中分别表示为A, R,V)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Apriori // Apriori算法运行结果
=======
Minimum support: 0.5 (12 instances) //最小支持度0.5,即最少需要12个实例
Minimum metric <confidence>: 0.9 //最小度量<置信度>: 0.9
Number of cycles performed: 10 //进行了10轮搜索
Generated sets of large itemsets: //生成的频繁项集
Size of set of large itemsets L(1): 7 //频繁1项集:7个
Large Itemsets L(1): //频繁1项集(outputItemSets设为True, 因此下面会具体列出)
spectacle-prescrip=myope 12
spectacle-prescrip=hypermetrope 12
astigmatism=no 12
astigmatism=yes 12
tear-prod-rate=reduced 12
tear-prod-rate=normal 12
contact-lenses=none 15
%%%%%%%%%%%%%%%%%%%%%%%%
在上面所示数据界面中,分别点击标签spectacle-prescrip,astigmatism,tear-prod-rate和contact-lenses,该列的值会自动进行分类排序,可以很方便的对上面结果进行。点击age标签,其值按pre-presbiopic、presbiopic和young分类排序,可以看到各属性值的记录数均为8<12,不满足最小支持度,因此age属性的所有取值都没有列在上面结果中。
%%%%%%%%%%%%%%%%%%%%%%%%
Size of set of large itemsets L(2): 1 //频繁2项集: 1个
Large Itemsets L(2):
tear-prod-rate=reduced contact-lenses=none 12
//tear-prod-rate取值为reduced且 contact-lenses取值为none 的记录数共有12个
Best rules found: //最佳关联规则
1. tear-prod-rate=reduced 12 ==> contact-lenses=none 12 conf:(1)
// 若tear-prod-rate取值为reduced可以推出 contact-lenses的取值为none,该关联规则置信度为100%
2.其它实验设置及部分结果展示
1. 实验中,若其它参数保持为默认值,将最小支持度下界设为0.8,则运行结果会显示”No large itemsets and rules found!”,即找不到满足条件的关联规则。
2. 若其它参数保持为默认值,将最小支持度下界设为0.25,上界设为0.8,度量选为置信度,最小值为0.8,则运行结果找到:频繁1项集10个,频繁2项集18个,频繁3项集4个,找到的最佳关联规则为:
1. tear-prod-rate=reduced 12 ==> contact-lenses=none 12 conf:(1)
2. spectacle-prescrip=myope tear-prod-rate=reduced 6 ==> contact-lenses=none 6 conf:(1)
3. spectacle-prescrip=hypermetrope tear-prod-rate=reduced 6 ==> contact-lenses=none 6 conf:(1)
4. astigmatism=no tear-prod-rate=reduced 6 ==> contact-lenses=none 6 conf:(1)
5. astigmatism=yes tear-prod-rate=reduced 6 ==> contact-lenses=none 6 conf:(1)
6. spectacle-prescrip=myope contact-lenses=none 7 ==> tear-prod-rate=reduced 6 conf:(0.86)
7. astigmatism=no contact-lenses=none 7 ==> tear-prod-rate=reduced 6 conf:(0.86)
8. contact-lenses=none 15 ==> tear-prod-rate=reduced 12 conf:(0.8)
3. 若其它参数保持为默认值,将最小支持度下界设为0.25,上界设为0.8,度量选为提升度(Lift : P(A,B)/(P(A)P(B))),最小值为1.1,则运行结果找到10条最佳关联规则,前3条如下:
1. tear-prod-rate=reduced 12 ==> spectacle-prescrip=myope contact-lenses=none 6 conf:(0.5) < lift:(1.71)> lev:(0.1) [2] conv:(1.21)
2. spectacle-prescrip=myope contact-lenses=none 7 ==> tear-prod-rate=reduced 6 conf:(0.86) < lift:(1.71)> lev:(0.1) [2] conv:(1.75)
3. tear-prod-rate=reduced 12 ==> astigmatism=no contact-lenses=none 6 conf:(0.5) < lift:(1.71)> lev:(0.1) [2] conv:(1.21)
4. 若其它参数保持为默认值,将最小支持度下界设为0.25,上界设为0.8,度量选为杠杆率(Leverage:P(A,B)-P(A)P(B),在下面第一条规则中,[4]表示满足lev:(0.19)的实例数目),最小值为0.1,则运行结果找到6条最佳关联规则,前3条如下:
1. tear-prod-rate=reduced 12 ==> contact-lenses=none 12 conf:(1) lift:(1.6) < lev:(0.19) [4]> conv:(4.5)
2. contact-lenses=none 15 ==> tear-prod-rate=reduced 12 conf:(0.8) lift:(1.6) < lev:(0.19) [4]> conv:(1.88)
3. tear-prod-rate=reduced 12 ==> spectacle-prescrip=myope contact-lenses=none 6
5. 若其它参数保持为默认值,将最小支持度下界设为0.25,上界设为0.8,度量选为确信度(Conviction:P(A)P(!B)/P(A,!B)),最小值为1.1,则运行结果找到10条最佳关联规则,前3条如下:
1. tear-prod-rate=reduced 12 ==> contact-lenses=none 12 conf:(1) lift:(1.6) lev:(0.19) [4] < conv:(4.5)>
2. spectacle-prescrip=myope tear-prod-rate=reduced 6 ==> contact-lenses=none 6 conf:(1) lift:(1.6) lev:(0.09) [2] < conv:(2.25)>
3. spectacle-prescrip=hypermetrope tear-prod-rate=reduced 6 ==> contact-lenses=none 6 conf:(1) lift:(1.6) lev:(0.09) [2] < conv:(2.25)>