bzoj2301 莫比乌斯反演+分段优化

转载请注明出处,谢谢http://blog.csdn.net/bigtiao097?viewmode=contents

题意

给定整数a,b,c,d,k,求axc,  byd(1a,b,c,d,k5×104)且gcd(x,y)=k的数对(x,y)有多少对.

思路

这个题比hdu1695 复杂一点,hdu1695可以看一下这里
和hdu1695相比,由于没有了a=c=1这个条件,需要在莫比乌斯反演的基础上容斥一下
莫比乌斯反演:

g(n)=n|df(d)f(n)=n|dμ(dn)g(d)

f(n)代表   gcd(x,y)=n   xy
g(n)gcd(x,y)%n=0  xy
这样就有了
g(n)=n|df(d)

然后利用反演公式,因为g(n)非常的好求,g(n)=cn×dn
根据上述的反演公式直接计算就可以了
关于容斥,假设solve(m,n)代表1xm, 1ym的(x,y)的对数
ans=solve(b,d)solve(a,d)solve(b,c)+solve(a,c)

但是上述这些还不足以AC,会TLE
我们还需要用分段来优化一下枚举因子的倍数的过程

for(int i=1,nex;i<=a;i=nex+1)
{
     nex = min(a/(a/i),b/(b/i));
     res += 1LL *(mu[nex]-mu[i-1])*(a/i)*(b/i);
}

这里的mu数组是莫比乌斯函数的前缀和
需要注意的是,若n/i=t,则t是满足a*i<=n的a的最大值,则n/(n/i)就是满足商为n/i的i的最大值
上述代码中,i~nexa/ib/i


具体代码如下:
Result:Accepted    Memory:1728 kb    Time :10772 ms

#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn=5e4+5;
bool vis[maxn];
int prime[maxn];
int mu[maxn];
int n,a,b,c,d,k,x;
ll ans;
void mobius()
{
    memset(vis,0,sizeof vis);
    mu[1] = 1;
    int tot = 0;
    for(int i=2;i<maxn;i++)
    {
        if( !vis[i] )
        {
            prime[tot++] = i;
            mu[i] = -1;
        }
        for(int j=0;j<tot;j++)
        {
            if(i * prime[j] >=maxn) break;
            vis[i * prime[j]] = true;
            if( i % prime[j] == 0)
            {
                mu[i * prime[j]] = 0;
                break;
            }
            else
                mu[i * prime[j]] = -mu[i];
        }
    }
    for(int i=2;i<maxn;i++)
        mu[i]+=mu[i-1];
}
ll solve(int a,int b)
{
    ll res = 0;
    if(a>b)swap(a,b);
    for(int i=1,nex;i<=a;i=nex+1)
    {
        nex = min(a/(a/i),b/(b/i));
        res += 1LL *(mu[nex]-mu[i-1])*(a/i)*(b/i);
    }
    return res;
}
int main()
{
    mobius();
    int T;
    cin>>T;
    while(T--)
    {
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        a--;
        c--;
        n = min(b,d);
        ans = solve(b/k,d/k)+solve(a/k,c/k)-solve(a/k,d/k)-solve(c/k,b/k);
        printf("%lld\n",ans);
    }
    return 0;
}


发布了27 篇原创文章 · 获赞 8 · 访问量 2万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览