unable to detect release version问题解决

CentOS 8使用yum时,提示错误如下:

按提示修改命令如下:

yum install nethogs --releasever=8 或 yum install nethogs --releasever 8

命令可以顺利执行。不过就是太麻烦了。

问题的本质是无法获得版本信息。应使用彻底解决的方法,那就是让系统能获得版本信息。

执行命令如下:

yum install --releasever=8 centos-linux-release

执行成功之后,yum再也不需要 --releasever来指定版本了。

jetauto@jetauto-desktop:~/jetauto_ws/src/jetauto_example/scripts/yolov5_detect$ python3 xwc.py [10/29/2024-18:41:42] [TRT] [I] [MemUsageChange] Init CUDA: CPU +224, GPU +0, now: CPU 265, GPU 3416 (MiB) [10/29/2024-18:41:42] [TRT] [I] Loaded engine size: 22 MiB [10/29/2024-18:41:47] [TRT] [I] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +158, GPU +36, now: CPU 452, GPU 3479 (MiB) [10/29/2024-18:41:53] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +240, GPU -12, now: CPU 692, GPU 3467 (MiB) [10/29/2024-18:41:53] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +21, now: CPU 0, GPU 21 (MiB) [10/29/2024-18:41:53] [TRT] [I] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +0, now: CPU 670, GPU 3445 (MiB) [10/29/2024-18:41:53] [TRT] [I] [MemUsageChange] Init cuDNN: CPU +0, GPU +0, now: CPU 670, GPU 3445 (MiB) [10/29/2024-18:41:53] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +34, now: CPU 0, GPU 55 (MiB) bingding: data (3, 480, 640) bingding: prob (38001, 1, 1) (python3:31020): GStreamer-CRITICAL **: 18:41:55.346: Trying to dispose element pipeline0, but it is in READY instead of the NULL state. You need to explicitly set elements to the NULL state before dropping the final reference, to allow them to clean up. This problem may also be caused by a refcounting bug in the application or some element. [ WARN:0@21.714] global /home/jetauto/opencv/modules/videoio/src/cap_gstreamer.cpp (1356) open OpenCV | GStreamer warning: unable to start pipeline (python3:31020): GStreamer-CRITICAL **: 18:41:55.347: Trying to dispose element videoconvert0, but it is in PAUSED instead of the NULL state. You need to explicitly set elements to the NULL state before dropping the final reference, to allow them to clean up. This problem may also be caused by a refcounting bug in the application or some element. [ WARN:0@21.714] global /home/jetauto/opencv/modules/videoio/src/cap_gstreamer.cpp (862) isPipelinePlaying OpenCV | GStreamer warning: GStreamer: pipeline have not been created (python3:31020): GStreamer-CRITICAL **: 18:41:55.347: Trying to dispose element appsink0, but it is in READY instead of the NULL state. You need to explicitly set elements to the NULL state before dropping the final reference, to allow them to clean up. This problem may also be caused by a refcounting bug in the application or some element. (python3:31020): GStreamer-CRITICAL **: 18:41:55.350: gst_element_post_message: assertion 'GST_IS_ELEMENT (element)' failed ^CTraceback (most recent call last): File "xwc.py", line 431, in <module> boxes, scores, classid = yolov5_wrapper.infer(frame) File "xwc.py", line 153, in infer input_image, image_raw, origin_h, origin_w = self.preprocess_image(raw_image_generator) File "xwc.py", line 264, in preprocess_image image = np.transpose(image, [2, 0, 1]) File "<__array_function__ internals>", line 6, in transpose File "/usr/local/lib/python3.6/dist-packages/numpy/core/fromnumeric.py", line 653, in transpose return _wrapfunc(a, 'transpose', axes) KeyboardInterrupt ------------------------------------------------------------------- PyCUDA ERROR: The context stack was not empty upon module cleanup. ------------------------------------------------------------------- A context was still active when the context stack was being cleaned up. At this point in our execution, CUDA may already have been deinitialized, so there is no way we can finish cleanly. The program will be aborted now. Use Context.pop() to avoid this problem. 解释
最新发布
04-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乐大师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值