- 博客(29)
- 资源 (2)
- 收藏
- 关注
原创 解决 VSCode 中 Pylance 经常崩溃的问题
Pylance 崩溃的原因在我这里是因为项目工作路径下的文件数量太多,而 Pylance 默认只有 4G 的缓存。搜索 python.analysis.exclude,点击添加项,添加不需要缓存的文件路径。
2024-05-15 23:22:49 5301 7
原创 [爬虫] Requests下载图片长时间无响应
将请求体中的内容复制到 requests 的 headers 中(不一定每一项都会用到,可以测试找到被验证的那一项或几项)。使用浏览器访问图片 url ,右键→检查元素→网络选项卡→图片的 Header 的请求体;下载网站上的图片时,发现所有 url 均报错。参数与浏览器访问的请求体一致。直接在命令行下载同样超时。验证比较严格,不仅仅会验证。
2024-02-05 21:24:35 789
原创 【工具】将 SDXL 的 ckpt 文件转为 Diffusers 库格式
【代码】【工具】将 SDXL 的 ckpt 文件转为 Diffusers 库格式。
2023-12-12 15:37:26 844
原创 【扩散模型->人物合成】PIDM : Person Image Synthesis via Denoising Diffusion Model
采用扩散模型和 OpenPose、人物图像作为条件,进行姿态迁移训练,同时可以用于服装迁移、风格混合、行人重识别等。
2022-12-23 16:15:48 2379 1
原创 【文生图】DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation
谷歌基于自家预训练扩散模型Imagen的主体细节保留的文生图编辑方法
2022-12-21 21:25:31 4940
原创 【虚拟试衣论文笔记】M3D-VTON: A Monocular-to-3D Virtual Try-On Network
论文地址:项目地址:https://github.com/fyviezhao/M3D-VTON本文提出了一种 Monocular-to-3D Virtual Try-On Network (M3D-VTON) 的多姿态图像虚拟试衣方法,兼顾了2D与3D方法的优点。主要是利用所提出的 Monocular Prediction Module (MPM) 从图像中估计目标人体分割图、深度图来同时获得2D与3D的辅助信息,并且通过 Depth Refinement Module (DRM) 加强深..
2022-04-03 22:12:00 1998 5
原创 【虚拟试衣论文笔记】Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN
论文地址:https://proceedings.neurips.cc/paper/2021/file/151de84cca69258b17375e2f44239191-Paper.pdf项目地址:https://github.com/xiezhy6/PASTA-GAN为了实现一个能够以无监督的方式在源和目标人之间迁移任意服装的可扩展的虚拟试穿方法,本文提出了一种纹理保持的端到端网络,即 **PAtch-routed SpaTially-Adaptive GAN (PASTA-GAN)**来实现非..
2022-03-28 17:26:27 579
原创 【虚拟试衣论文】Generating High-Resolution Fashion Model Images Wearing Custom Outfits
论文地址:http://openaccess.thecvf.com/content_ICCVW_2019/papers/CVFAD/Yildirim_Generating_High-Resolution_Fashion_Model_Images_Wearing_Custom_Outfits_ICCVW_2019_paper.pdf项目地址:Zalando是总部位于德国柏林的大型网络电子商城, 其主要产品是服装和鞋类。这篇文章很短,几乎没有什么废话,模型的效果看起来也很好。得益于其行业性质,其使用的..
2022-03-09 16:14:58 495
原创 【虚拟试衣论文笔记】C-VTON: Context-Driven Image-Based Virtual Try-On Network
论文地址:https://openaccess.thecvf.com/content/WACV2022/papers/Fele_C-VTON_Context-Driven_Image-Based_Virtual_Try-On_Network_WACV_2022_paper.pdf项目地址:https://github.com/benquick123/C-VTON作者提出了一个上下文驱动的虚拟试穿网络 (C-VTON),即使在具有挑战性的姿势配置和存在自我遮挡的情况下,也能令人信服地将选定的服装区..
2022-03-06 16:41:43 4736 2
原创 【ViT论文】Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations
论文地址:http://arxiv.org/abs/2202.07800项目地址:https://github.com/youweiliang/evit在这项工作中,作者在 ViT 模型的前馈过程中重新组织图像标记,在训练期间将其集成到 ViT 中。由相应的类令牌注意力引导识别 MHSA 和 FFN(即前馈网络)模块之间的注意力图像令牌,然后,通过保留注意图像标记和融合非注意图像标记来重组图像标记,以加快后续的 MHSA 和 FFN 计算。在相同数量的输入图像标记下,该方法减少了 MHSA 和 ..
2022-02-28 17:39:16 3804
原创 【对比学习论文笔记】CMC: Contrastive Multiview Coding
论文地址:http://arxiv.org/abs/1906.05849项目地址:http://github.com/HobbitLong/CMC
2022-02-26 13:35:31 2616
原创 【ViT 论文笔记】Vision Transformer for Small-Size Datasets
论文地址:https://arxiv.org/abs/2112.13492项目地址:将 Transformer 结构应用于图像分类任务的 ViT 的性能优于卷积神经网络。 然而,ViT 的高性能源于使用大型数据集(如 JFT-300M)进行预训练,其对大型数据集的依赖被认为是源于其低局部性归纳偏差。本文提出了 Shifted Patch Tokeniza-tion (SPT) 和 Locality Self-Attention (LSA),来解决了缺乏局部性归纳偏差的问题,即使在小型数据集上也能..
2022-02-20 13:54:06 3404 3
原创 【CV Transformer 论文笔记】Intriguing Properties of Vision Transformers
遮挡(Occlusions)对于遮挡的建模,作者采用了一种命名为PatchDrop的方法,即选取所有patches的一个子集,将其像素值置为0;根据子集选取方法的不同又可以划分成三种方法:Random PatchDrop(随机)Salient (foreground) PatchDrop(显著/前景)Non-salient (background) PatchDrop(非显著/背景)在ImageNet的验证集(50K张图片)上进行视觉识别任务的比较,随着不同PatchDrop方法的Infom
2021-12-27 13:27:01 2324 1
原创 【CV Transformer 论文笔记】MAE: Masked Autoencoders Are Scalable Vision Learners
本文的主要观点是:掩码自编码器 (MAE) 是适用于计算机视觉的可扩展自监督学习器。如果说ViT对应于NLP中的Tranformer,MAE实际上是对应于BERT。MAE的核心思想是随机屏蔽输入图像一部分的patches随后重建被屏蔽的像素。 这种将输入映射到潜在表示再重构输入的编码器-解码器结构就叫做Autoencoder。MAE基于2个核心设计:1、非对称编码器-解码器架构,其中编码器仅对可见的patches编码,随后将mask tokens加入编码结果中馈送到轻量级解码器。2、屏蔽输入图像.
2021-12-21 18:54:09 2369
原创 【CV Transformer 论文笔记】PS-ViT: Vision Transformer with Progressive Sampling
论文地址:https://openaccess.thecvf.com/content/ICCV2021/papers/Yue_Vision_Transformer_With_Progressive_Sampling_ICCV_2021_paper.pdf项目地址:https://github.com/yuexy/PS-ViTViT直接将纯Transformer架构应用于图像分类,通过简单地将图像分成固定长度的Tokens,并使用Transformer来学习这些tokens之间的关系。然而,这种朴素..
2021-12-20 11:43:10 3055
原创 【论文笔记】MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation
论文地址:https://papers.nips.cc/paper/2021/file/950a4152c2b4aa3ad78bdd6b366cc179-Paper.pdf项目地址:https://github.com/facebookresearch/MaskFormer现在的方法通常将语义分割制定为per-pixel classification任务,而实例分割则使用mask classification来处理。本文作者的观点是:mask classification完全可以通用,即可以使用..
2021-12-19 11:30:39 10965
原创 【论文笔记】Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation
本文提出了用于通用图像分割(全景、实例或语义)的 Masked-attention Mask Transformer (Mask2Former)。Mask2Former建立在一个简单的元框架 (MaskFormer)和一个新的 Transformer 解码器上,其关键组成部分为掩码注意力(Masked-attention),通过将交叉注意力限制在预测的掩码区域内来提取局部特征。与为每个任务(全景、实例或语义)设计专门模型相比,Mask2Former 节省了 3 倍的研究工作,并且有效节省计算资源。M.
2021-12-17 11:40:24 18977
原创 【虚拟试衣论文笔记】CP-VTON+: Clothing Shape and Texture Preserving Image-Based Virtual Try-On
论文阅读笔记CP-VTON+: Clothing Shape and Texture Preserving Image-Based VirtualTry-On
2021-12-15 10:10:20 4742 6
原创 SwiftUI学习之路:View修饰符-preferredColorScheme
preferredColorScheme设置当前Color Scheme偏好。声明方式func preferredColorScheme(_ colorScheme: ColorScheme?) -> some View参数colorScheme是一种enum(枚举)类型,包含两个cases:dark light对应于系统的深色模式和浅色模式。 VStack { Button(action: {}) { Text(" Button") }
2021-12-14 10:21:46 2177
原创 SwiftUI学习之路:View的修饰符-foregroundStyle
foregroundStyle设置一个View的前景样式声明方式:func foregroundStyle<S>(_ style: S) -> some View where S : ShapeStylefunc foregroundStyle<S1, S2>(_ primary: S1, _ secondary: S2) -> some View where S1 : ShapeStyle, S2 : ShapeStylefunc foreground
2021-12-12 21:22:10 2152
原创 Human Parsing 数据预处理使用指南
CIHP_PGN使用指南# 1.进入目录 & 激活condacd ~/cz/CIHP_PGN && conda activate CIHP_PGN# 2.整理数据集python make_dataset.py 存放图片的路径 数据集命名cp 存放图片的路径/* datasets/数据集命名/images/# 3.处理数据python test_pgn.py --dataset=数据集命名# 4.复制推理结果到指定文件夹cp output/数据集命名/* 目标文件夹
2021-09-04 17:37:05 1135
原创 2021-08-23
# 先传文件sftp lingfeimo@10.6.11.219pwd : abcd1234put 把压缩包拖进去 /home/lingfeimo/cz# 再进shhssh lingfeimo@10.6.11.219pwd : abcd1234cd /home/lingfeimo/czWget https://github.com/fatedier/frp/releases/download/v0.37.1/frp_0.37.1_linux_amd64.tar.gztar -zx
2021-08-23 10:34:03 169
翻译 frp内网穿透工具使用方法
frp内网穿透工具使用方法通过 SSH 访问局域网中的计算机本文翻译自https://github.com/fatedier/frp使用示例部分,同时有部分内容由本文作者添加或修改。首先,根据自己的操作系统和架构从Release页面下载最新的压缩包。# 解压命令tar -zxvf frp_0.37.1_linux_amd64.tar.gz # 进入解压后的文件夹cd frp_0.37.1_linux_amd64其中 frps 和 frps.ini 适用于使用公共 IP的服务器 A ,f
2021-08-23 10:04:39 662
原创 Linux命令行下重装NVIDIA驱动、CUDA、CUDNN
Linux命令行下重装NVIDIA驱动、CUDA、CUDNN1、卸载NVIDIA驱动、CUDA# 卸载驱动sudo apt-get --purge remove "*nvidia*"# 卸载CUDAsudo apt-get --purge remove "*cublas*" "cuda*"# 删掉没有被依赖而且是自动安装的包sudo apt autoremove2、安装NVIDIA驱动、CUDA需要提前下载好想要安装的驱动版本的run文件以及对应CUDA版本的run文件。# 关闭XSe
2021-05-10 17:26:13 2341
原创 Linux命令行下 DensePose使用环境搭建
本文章是为了下一次安装环境方便,并非问题-解决性质。遇到的部分问题及解决方案,请查看另一篇文章。1.新建conda环境-densepose# 如果没有添加镜像源可能下载速度会比较慢,添加中科大镜像源conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/# 创建densepose环境conda create -n densepose python=2.72.安装依赖包# 安装依赖包conda i
2021-05-10 16:01:21 556 2
原创 Linux配置DensePose环境全记录
1.新建conda环境-densepose创建一个新的conda虚拟环境,方便管理。# 如果没有添加镜像源可能下载速度会比较慢,添加中科大镜像源conda config --set show_channel_urls yes# 创建densepose环境conda create -n densepose python=2.7densepose是环境名,pyhton版本2.7。2.安装CUDA9和 CuDNN 7由于Caffe2需要CUDA支持,因此需要先安装CUDA和CuDNN# 安装
2021-04-03 13:56:55 777
原创 Mendeley文献PDF导入Details不一致问题解决方法
在查找文献阅读时,常常从会议或期刊的网站找到自己感兴趣的文章,然后到Google Scholar中检索下载PDF文件,再导入Mendeley Desktop。但是偶尔会发生Details与原本文章的内容不一致的问题,下面提供手动解决该问题的方法。1、进入Mendeley Desktop -> hlep -> Mendeley Website2、在Mendeley Website中点击Search栏3、输入文章title检索4、找到自己想要的那篇文章,点击"add to libra
2020-09-19 22:48:28 1681
原创 C++ 字符串大小写转换
注意需要include的库(1)algorithm库的transform函数#include <algorithm>#include <string>string str;//转小写transform(str.begin(),str.end(),str.begin(),::tolower);//转大写transform(str.begin(),str.en...
2020-02-10 17:28:03 323
原创 C++ 指针和引用
C++ 指针和引用指针:值是所指向原变量的内存地址;引用:值和原变量相同,只是取了个别名(即在内存占有同一个存储单元);int arr[8]={1,2,3,4,5,6,7,8};//arr本身是指向arr[0]的指针int *p = arr;//此时直接调用p[i]即是arr[i]p[i];//地址后移,即是arr[i]++p;//是arr[1]的地址*p;//是arr[0]的值:...
2020-02-10 16:44:05 106
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人