【ViT 论文笔记】Vision Transformer for Small-Size Datasets

在这里插入图片描述

论文地址:https://arxiv.org/abs/2112.13492
项目地址:

将 Transformer 结构应用于图像分类任务的 ViT 的性能优于卷积神经网络。 然而,ViT 的高性能源于使用大型数据集(如 JFT-300M)进行预训练,其对大型数据集的依赖被认为是源于其低局部性归纳偏差。
本文提出了 Shifted Patch Tokeniza-tion (SPT)Locality Self-Attention (LSA),来解决了缺乏局部性归纳偏差的问题,即使在小型数据集上也能从头开始学习。 此外,SPT 和 LSA 是通用且有效的附加模块,可轻松应用于各种 ViT。
实验结果表明,当SPT和LSA同时应用于ViTs时,在具有代表性的小尺寸数据集Tiny-ImageNet中,性能平均提升了2.96%。 尤其是 Swin Transformer 取得了压倒性的 4.08% 的性能提升。

作者归纳了ViT目前存在的两个问题:

  1. 糟糕的标记化。 ViT 将给定​​图像划分为大小相等的不重叠块,并将每个块使用相同的线性投影到视觉标记。因此,ViT 的标记化具有排列不变性,这使得能够很好地嵌入补丁之间的关系 。但是非重叠块使得视觉标记具有相对较小的感受野,而较小的感受野会导致 ViT只用很少的像素进行标记,因此,与相邻像素的空间关系没有充分嵌入到每个视觉标记中。
  2. 注意力机制存在问题。图像数据的特征维度远大于自然语言和音频信号,因此嵌入的tokens的数量必然很大。因此,token的注意力分布变得平滑。换句话说,ViT 无法在局部关注重要的视觉令牌。上述两个主要问题导致高度冗余的注意力无法集中在目标类上。这种多余的注意力使 ViT很容易将注意力集中在背景上,而不能很好地捕捉目标类的形状。

本文提出了两种解决方案以有效改善 ViT 从零开始学习小型数据集的局部归纳偏差:

  1. 移位补丁标记化(SPT),以在标记化过程中进一步利用相邻像素之间的空间关系。 SPT 的思想来源于时间移位模块(TSM)。TSM是一种有效的时间建模,它可以转换一些特征的时间通道。受此启发,本文提出了有效的空间建模,将空间移位的图像与输入图像一起标记。 SPT可以为 ViT 提供比标准标记化更广泛的感受野,具有通过在每个视觉标记中嵌入更多空间信息来增加局部归纳偏差的效果。
  2. Locality Self-Attention (LSA),允许 ViT 在局部实施注意力。 LSA通过排除自我标记和将可学习温度应用于 softmax 函数来减轻注意力分数分布的平滑现象。LSA通过强制每个标记更多地关注与自身有较大关系的标记来诱导注意力局部工作。

所提出的 SPT 和 LSA 可以很容易地以附加模块的形式应用于各种 ViT,而无需更改结构,并且可以有效地提高性能。

在这里插入图片描述

具体而言,

对于SPT(如上图左侧图例),本文作者在左上、左下、右上、右下4个方向上对输入图像进行空间移位半个patch size,并与输入图像连接。接着像标准 ViT 一样应用补丁分区,然后依次执行patch flattening、层归一化 [2] 和线性投影三个过程。

LSA (如上图右侧图例)主要通过学习 softmax 函数的温度参数来锐化注意力分数的分布(一般来说,softmax 函数可以通过温度缩放来控制输出分布的平滑度 [11])。此外,通过应用**对角屏蔽(Diagonal Masking)**来去除自标记(self-token)关系,可以抑制由Query和Key计算的相似度矩阵的对角分量,相对增加了不同token之间的注意力分数,使得注意力分数的分布更加清晰,具体来说,对角掩蔽就是将自身token赋值-∞ ,而其他token不变。

  • 个人总结

SPT实际上是把四个对角方向的位移patch加入到编码中来获得更大的局部信息,原理上十分简单粗暴,个人感觉和重叠patch的想法是差不多的,而且是用计算量来换取的大的感受野,但是由于取的5个patch(4个方向+原patch)都包含部分重叠的部分,所以实际上比重叠patch可以更好的学到patch内部像素间关系。

而softmax 函数的温度参数在可学习而非固定时,会低于标准ViT的温度,并且随着深度的增加会有上升的趋势。而温度会影响Token分布的平滑程度(这方面不是特别了解),个人感觉是过于平滑不同的patch的差异性就没有那么明显,因此尖锐一点的分布有利于区分不同的token从而实现对重要token的重点关注。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
ViTVision Transformer)是一种用于计算机视觉任务的Transformer模型。它在处理图像数据时,将图像划分为一系列的图像块,然后将这些图像块转换为序列数据,并使用Transformer编码器对其进行处理。ViT利用了Transformer的自注意力机制,通过学习将图像块之间的关系建模,从而实现对图像的特征提取和表征学习。 ViT模型的核心思想是引入了位置嵌入(position embedding)来为序列数据引入位置信息。位置嵌入是Transformer模型中的一部分,它可以将每个序列元素与其在原始图像中的位置相关联。这样,模型就可以利用位置信息来捕捉图像中不同区域的上下文关系。关于Transformer位置嵌入的详细信息,可以参考中的《【机器学习】详解 Transformer_闻韶-CSDN博客_机器学习transformer》的解读。 另外,关于ViT的更多研究论文和应用实例,可以参考中的GitHub资源,该资源收集了一些关于Transformer计算机视觉结合的论文。同时,中的《机器学习》也提供了对Transformer编码器结构的详细解释,可以进一步了解Transformer模型的工作原理。 总结起来,ViT是一种通过将图像转换为序列数据,并利用Transformer模型进行特征提取和表征学习的方法。它利用位置嵌入来引入图像中不同区域的位置信息,并通过自注意力机制来建模图像块之间的关系。通过研究论文和资源,我们可以深入了解ViT模型的原理和应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值