PLS1和lanczos的联系

经典的NIPALS流程如下
for a = 1 : A , a=1: A, \quad a=1:A, (A-the number of components to be extracted)

  1. v a = X a − 1 t y \mathbf{v}_{a}=\mathbf{X}_{a-1}^{t} \mathbf{y} va=Xa1ty
  2. w a = v a / ∥ v a ∥ \mathbf{w}_{a}=\mathbf{v}_{a} /\left\|\mathbf{v}_{a}\right\| wa=va/va
  3. τ a = X a − 1 w a \boldsymbol{\tau}_{a}=\mathbf{X}_{a-1} \mathbf{w}_{a} τa=Xa1wa
  4. t a = τ a / ∥ τ a ∥ \mathbf{t}_{a}=\boldsymbol{\tau}_{a} /\left\|\boldsymbol{\tau}_{a}\right\| ta=τa/τa
  5. p a = X a − 1 t t a \mathbf{p}_{a}=\mathbf{X}_{a-1}^{t} \mathbf{t}_{a} pa=Xa1tta
  6. x a = X a − 1 − t a p a t \mathbf{x}_{a}=\mathbf{X}_{a-1}-\mathbf{t}_{a} \mathbf{p}_{a}^{t} xa=Xa1tapat (the deflation step)
  7. q a = t a t y q_{a}=\mathbf{t}_{a}^{t} \mathbf{y} qa=taty

end
T = [ t 1 t 2 … t A ] \mathbf{T}=\left[\mathbf{t}_{1} \mathbf{t}_{2} \ldots \mathbf{t}_{A}\right] T=[t1t2tA] (the orthonormal scores)
W = [ w 1 w 2 … w A ] \mathbf{W}=\left[\mathbf{w}_{1} \mathbf{w}_{2} \ldots \mathbf{w}_{A}\right] W=[w1w2wA] (the orthonormal weights)
P = [ p 1 p 2 … p A ] \mathbf{P}=\left[\mathbf{p}_{1} \mathbf{p}_{2} \ldots \mathbf{p}_{A}\right] P=[p1p2pA] (the matrix of X \mathbf{X} X -loadings)
q t = [ q 1 q 2 … q A ] \mathbf{q}^{t}=\left[q_{1} q_{2} \ldots q_{A}\right] qt=[q1q2qA] (the vector of y \mathbf{y} y -loadings)
PLS1的系数计算
y = T q y = Tq y=Tq我们希望得到T如何用 X 0 X_0 X0表达
假设有 T = X 0 W ∗ T = X_0W^* T=X0W,显然, w a ∗ w_a^* wa可以和 w 1 , ⋯   , w a − 1 {w_1,\cdots,w_{a-1}} w1,,wa1关于 X 0 T X 0 X_0^TX_0 X0TX0共轭得到
观察以下常用的计算公式
β P L S = W ( P t W ) − 1 q \boldsymbol{\beta}_{PLS}=\mathbf{W}\left(\mathbf{P}^{t} \mathbf{W}\right)^{-1} \mathbf{q} βPLS=W(PtW)1q

可以得出
W ∗ = W ( P t W ) − 1 \mathbf{W^*}=\mathbf{W}\left(\mathbf{P}^{t} \mathbf{W}\right)^{-1} W=W(PtW)1

v \mathbf{v} v或者 w \mathbf{w} w两两正交,但并非关于 X 0 T X 0 \mathbf{X_0^TX_0} X0TX0共轭,即 X 0 w i \mathbf{X_0w_i} X0wi之间并不存在正交关系。

τ a ∗ = X 0 w a \boldsymbol{\tau}_{a}^*=\mathbf{X}_{0} \mathbf{w}_{a} τa=X0wa τ a ∗ \boldsymbol{\tau}_{a}^* τa 需要与 s p a n { t 1 , ⋯   , t a − 1 } span\{t_1,\cdots,t_{a-1}\} span{t1,,ta1}经过一个 Gram–Schmidt 正交化得到 t a t_{a} ta

y T X a = y T X a − 1 − y T t a p a T → v a + 1 T = v a T − v a T w a p a T / ∣ ∣ τ a ∣ ∣ → \mathbf{y^TX}_a =\mathbf{y^TX}_{a-1}-\mathbf{y^Tt}_a\mathbf{p}_a^T\rightarrow \mathbf{v}_{a+1}^T =\mathbf{v}_{a}^T-\mathbf{v}_{a}^Tw_ap_a^T/||\boldsymbol{\tau}_{a}|| \rightarrow yTXa=yTXa1yTtapaTva+1T=vaTvaTwapaT/τa
v a + 1 = v a − ∣ ∣ v a ∣ ∣ ∣ ∣ τ a ∣ ∣ p a v_{a+1} =v_{a} -\frac{||v_a||}{||\tau_a||}p_a va+1=vaτavapa

我们可以发现,不用再去计算残差,只需要去迭代就能计算出权值

做一些简单的变换可以得到
p a = ∥ τ a ∥ ( w a − ∥ v a + 1 ∥ ∥ v a ∥ w a + 1 ) , a = 1 , … , A < m \mathbf{p}_{a}=\left\|\boldsymbol{\tau}_{a}\right\|\left(\mathbf{w}_{a}-\frac{\left\|\mathbf{v}_{a+1}\right\|}{\left\|\mathbf{v}_{a}\right\|} \mathbf{w}_{a+1}\right), a=1, \ldots, A<m pa=τa(wavava+1wa+1),a=1,,A<m
P = W + B 2 \mathbf{P}=\mathbf{W}_{+} \mathbf{B}_{2} P=W+B2
W + = [ W w a + 1 ] W_{+} = [W w_{a+1}] W+=[Wwa+1]
在这里插入图片描述

在这里插入图片描述

W ∗ ( P T W ) = W W^*(P^TW) = W W(PTW)=W

由此,得到 W ∗ → W W^*\rightarrow W WW,是基于双对角的lanczos正交化方法

参考: The geometry of PLS1 explained properly

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值