live archive 4210 - Almost Shortest Path(不包含最短路的最短路)

题意:找出一条近最短路,这条近最短路不包含所有最短路的边

先找出所有最短路经过的点。再找最短路,要求使用的边不是最短路上的边(边的两点都是最短路经过的点,而且边长等于两点间的距离,则说明是最短路上的边)。

两次spfa分别找到起点和终点的最短距离,当每一个点的两个最短距离加起来刚好是起点到终点的距离时,说明该点在最短路上。

做这道题比较顺利,直接贴代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>

using namespace std;
const int N = 509;
const int M = 10009;
const int INF  = 0x3f3f3f3f;
int n,m,st,en;
struct LL{
    int to,nex,dis;
} L[M],RL[M];
int F[N],cnt,RF[N],Rcnt;
int dis[N],redis[N];
bool visit[N];
void make_mindis()
{
    memset(visit,false,sizeof(visit));
    queue<int> que;
    while(!que.empty()) que.pop();
    memset(dis,INF,sizeof(dis));
    que.push(st);
    visit[st] = true;
    dis[st] = 0;
    while(!que.empty())
    {
        int e=que.front(); que.pop();
       // cout<<e<<endl;
        visit[e] = false;
        for(int i=F[e];i;i=L[i].nex)
        {
            int to = L[i].to;
            //cout<<to<<"kk"<<endl;
            if(dis[to]>dis[e]+L[i].dis)
            {
                dis[to]=dis[e]+L[i].dis;
                if(!visit[to])
                {
                    visit[to] = true;
                    que.push(to);
                }

            }
        }
    }
}
void make_minredis()
{
    memset(visit,false,sizeof(visit));
    queue<int> que;
    while(!que.empty()) que.pop();
    memset(redis,INF,sizeof(redis));
    que.push(en);
    visit[en] = true;
    redis[en] = 0;
    while(!que.empty())
    {
        int e=que.front(); que.pop();
        visit[e] = false;
        for(int i=RF[e];i;i=RL[i].nex)
        {
            int to = RL[i].to;
            if(redis[to]>redis[e]+RL[i].dis)
            {
                redis[to]=redis[e]+RL[i].dis;
                if(!visit[to])
                {
                    visit[to] = true;
                    que.push(to);
                }
            }
        }
    }
}
void add(int f,int t,int dis)
{
    L[cnt].dis = dis;
    L[cnt].nex = F[f];
    L[cnt].to = t;
    F[f] = cnt;
    cnt++;
}
void Radd(int f,int t,int dis)
{
    RL[Rcnt].dis = dis;
    RL[Rcnt].nex = RF[f];
    RL[Rcnt].to = t;
    RF[f] = Rcnt;
    Rcnt++;
}
void init()
{
    int f,t,dis;
    cnt = 1;Rcnt = 1;
    memset(F,0,sizeof(F));
    memset(RF,0,sizeof(RF));
    for(int i=0;i<m;i++)
    {
        scanf("%d%d%d",&f,&t,&dis);
        add(f,t,dis);
        Radd(t,f,dis);
    }
}
bool minpoint[N];
struct nod{
    int to,dis;
    bool operator<(const nod t) const
    {
        return dis>t.dis;
    }
};
int ansdis[N];
void solve()
{

    make_mindis();
    if(dis[en] == INF)
    {
        printf("-1\n");
        return ;
    }
    make_minredis();
    int D = dis[en];
    for(int i=0;i<n;i++)
    if(dis[i]+redis[i]==D)
    minpoint[i] = true;
    else
    minpoint[i] =false;
//    for(int i=0;i<n;i++) if(minpoint[i]) cout<<i<<" ";cout<<endl;
    priority_queue<nod> que;
    while(!que.empty()) que.pop();
    memset(visit,false,sizeof(visit));
    memset(ansdis,INF,sizeof(ansdis));
    nod e,t;
    e.to = st,e.dis =0;
    ansdis[e.to] = 0;
    que.push(e);
    while(!que.empty())
    {
        e = que.top(); que.pop();
        if(visit[e.to]) continue;
        visit[e.to] = true;
        for(int i=F[e.to];i;i=L[i].nex)
        {
            int to = L[i].to;
            if(visit[to]) continue;
            if(ansdis[to]>ansdis[e.to]+L[i].dis)
            {
                if(minpoint[e.to]&&minpoint[to]&&L[i].dis==abs(dis[e.to]-dis[to]))
                continue;
                ansdis[to] = ansdis[e.to]+L[i].dis;
                t.dis = ansdis[to];
                t.to = to;
                que.push(t);
            }
        }
    }
    if(ansdis[en]==INF)
    {
        printf("-1\n");
        return ;
    }
    else
    {
        printf("%d\n",ansdis[en]);
    }
}
int main()
{
    freopen("in.txt","r",stdin);
    while(~scanf("%d%d",&n,&m)&&(n+m))
    {
        scanf("%d%d",&st,&en);
        init();
        solve();
    }
    return 0;
}


Practice 1 Date: Monday, March 18th, 2013 We highly encourage being environment friendly and trying all problems on your own. Implement exercise 2.3-7. Implement priority queue. Implement Quicksort and answer the following questions. (1) How many comparisons will Quicksort do on a list of n elements that all have the same value? (2) What are the maximum and minimum number of comparisons will Quicksort do on a list of n elements, give an instance for maximum and minimum case respectively. Give a divide and conquer algorithm for the following problem: you are given two sorted lists of size m and n, and are allowed unit time access to the ith element of each list. Give an O(lg m + lgn) time algorithm for computing the kth largest element in the union of the two lists. (For simplicity, you can assume that the elements of the two lists are distinct). Practice 2 Date: Monday, April 1st, 2013 We highly encourage being environment friendly and trying all problems on your own. Matrix-chain product. The following are some instances. Longest Common Subsequence (LCS). The following are some instances. X: xzyzzyx Y: zxyyzxz X:MAEEEVAKLEKHLMLLRQEYVKLQKKLAETEKRCALLAAQANKESSSESFISRLLAIVAD Y:MAEEEVAKLEKHLMLLRQEYVKLQKKLAETEKRCTLLAAQANKENSNESFISRLLAIVAG Longest Common Substring. The following are some instances. X: xzyzzyx Y: zxyyzxz X:MAEEEVAKLEKHLMLLRQEYVKLQKKLAETEKRCALLAAQANKESSSESFISRLLAIVAD Y:MAEEEVAKLEKHLMLLRQEYVKLQKKLAETEKRCTLLAAQANKENSNESFISRLLAIVAG Max Sum. The following is an instance. (-2,11,-4,13,-5,-2) Shortest path in multistage graphs. Find the shortest path from 0 to 15 for the following graph.   A multistage graph is a graph (1) G=(V,E) with V partitioned into K >= 2 disjoint subsets such that if (a,b) is in E, then a is in Vi , and b is in Vi+1 for some subsets in the partition; and (2) | V1 | = | VK | = 1.     Practice 3 Date: Monday, April 15th, 2013 We highly encourage being environment friendly and trying all problems on your own. Knapsack Problem. There are 5 items that have a value and weight list below, the knapsack can contain at most 100 Lbs. Solve the problem both as fractional knapsack and 0/1 knapsack. A simple scheduling problem. We are given jobs j1, j2… jn, all with known running times t1, t2… tn, respectively. We have a single processor. What is the best way to schedule these jobs in order to minimize the average completion time. Assume that it is a nonpreemptive scheduling: once a job is started, it must run to completion. The following is an instance. (j1, j2, j3, j4) : (15,8,3,10) Single-source shortest paths. The following is the adjacency matrix, vertex A is the source.  A B C D E A -1 3 B 3 2 2 C D 1 5 E -3 All-pairs shortest paths. The adjacency matrix is as same as that of problem 3.(Use Floyd or Johnson’s algorithm)     Practice 4 Date: Monday, May 8th, 2013 We highly encourage being environment friendly and trying all problems on your own. 0/1 Knapsack Problem. There are 5 items that have a value and weight list below, the knapsack can contain at most 100 Lbs. Solve the problem using back-tracking algorithm and try to draw the tree generated. Solve the 8-Queen problem using back-tracking algorithm.    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值