有 NN 头牛站成一行,被编队为1、2、3…N,每头牛的身高都为整数。
当且仅当两头牛中间的牛身高都比它们矮时,两头牛方可看到对方。
现在,我们只知道其中最高的牛是第 PP 头,它的身高是 HH ,剩余牛的身高未知。
但是,我们还知道这群牛之中存在着 MM 对关系,每对关系都指明了某两头牛 AA 和 BB 可以相互看见。
求每头牛的身高的最大可能值是多少。
输入格式
第一行输入整数N,P,H,MN,P,H,M,数据用空格隔开。
接下来M行,每行输出两个整数 AA 和 BB ,代表牛 AA 和牛 BB 可以相互看见,数据用空格隔开。
输出格式
一共输出 NN 行数据,每行输出一个整数。
第 ii 行输出的整数代表第 ii 头牛可能的最大身高。
数据范围
1≤N≤100001≤N≤10000,
1≤H≤10000001≤H≤1000000,
1≤A,B≤100001≤A,B≤10000,
0≤M≤100000≤M≤10000
输入样例:
9 3 5 5
1 3
5 3
4 3
3 7
9 8
输出样例:
5
4
5
3
4
4
5
5
5
注意:
此题中给出的关系对可能存在重复
思路:如果两头牛看得见则中间的牛h-1,同时使用差分记录,最后再前缀和还原数组。
#include<bits/stdc++.h>
using namespace std;
int a[10010],b[10010];
map<pair<int,int>,bool> existed;
int main()
{
int n,p,h,m;
cin >> n >> p >> h >> m;
for(int i=1;i<=m;i++)
{
int x,y;
cin >> x >> y ;
if(x>y) swap(x,y);
if(existed[make_pair(x,y)]) continue;
existed[make_pair(x,y)] = true;
a[x+1]--,a[y]++;
}
for(int i=1;i<=n;i++)
{
b[i] = b[i-1] + a[i];
cout << h+ b[i] << endl;
}
}