浅析三种多路搜索树

本文深入探讨了B树家族,包括B树、B+树和B*树,这些数据结构特别适用于磁盘I/O操作。由于磁盘访问时间主要由寻道时间、转动延迟和数据传送时间组成,因此减少磁盘访问次数至关重要。B树的特点是节点大小可与磁盘块匹配,每个节点包含多个键值和孩子。B+树则进一步优化,非叶子节点仅用于查找,所有数据在叶子节点,且通过链指针便于遍历。B*树则在B+树基础上增加了指向兄弟节点的指针,以保持节点至少2/3满,避免频繁分解。
摘要由CSDN通过智能技术生成

B树家族

磁盘I/O操作的基本单位为块。从磁盘上读取信息时,会把包含信息的整个块读入内存;将信息存储到磁盘上时,也需要将整个块写到磁盘上。当每次从磁盘上请求信息时,都必须先在磁盘上定位该信息。磁头移动到包含所请求信息的磁盘位置上方。然后,将磁盘旋转,将磁头下方的整个块传送到内存。也就是说,数据访问时间由几个时间段组成:

    • 访问时间=寻道时间+转动延迟+数据传送时间

与在内存中传送信息相比,这个过程是相当缓慢的,其中寻道时间由于倚赖与磁头在定位到正确的磁道过程中的磁头的机械运动是非常消耗时间的。转动延迟指的是磁头转动到正确的磁盘块所需的时间。

这里写图片描述

如果程序需要不断的使用辅助存储器上的信息,在设计该程序时就应该考虑这种存储方式的特性。如果用平衡树(AVL,RB)来作为这种存储方式的数据结构,那么平衡树可能分布在磁盘的不同块上,所以平均需要访问两个磁盘块。如果程序经常使用该树,这种访问时间就会显著增加。此外在该树中的插入和删除键值也需要访问多个个磁盘块。可以看出,平衡树在内存中是一种非常高效的工具,而在磁盘上就会变得非常的低效。在涉及辅助存储器时,二叉查找树在其他方面的性能优点会变得微不足道,因为这种方法需要不断的访问辅助存储器,严重降低了性能。
在磁盘上一次存取大量数据比在磁盘上的不同部分存取少量数据更好,比如给磁盘传送10KB数据时:

  • 一个10KB片段上:
  • 访问时间=40ms(寻道)+

下面是一个简单的 Java 多路查找(Trie)的代码示例: ```java public class Trie { private TrieNode root; public Trie() { root = new TrieNode(); } public void insert(String word) { TrieNode node = root; for (char c : word.toCharArray()) { if (node.children[c - 'a'] == null) { node.children[c - 'a'] = new TrieNode(); } node = node.children[c - 'a']; } node.isEndOfWord = true; } public boolean search(String word) { TrieNode node = root; for (char c : word.toCharArray()) { if (node.children[c - 'a'] == null) { return false; } node = node.children[c - 'a']; } return node.isEndOfWord; } public boolean startsWith(String prefix) { TrieNode node = root; for (char c : prefix.toCharArray()) { if (node.children[c - 'a'] == null) { return false; } node = node.children[c - 'a']; } return true; } private class TrieNode { private TrieNode[] children; private boolean isEndOfWord; public TrieNode() { children = new TrieNode[26]; } } } ``` 在这个示例中,我们定义了一个 Trie 类,其中包含一个内部 TrieNode 类,用于表示 Trie 中的节点。TrieNode 类有一个布尔型变量 isEndOfWord,用于指示该节点是否是一个单词的结尾。Trie 类有三个方法:insert、search 和 startsWith。insert 方法用于将单词插入到 Trie 中,search 方法用于查找单词是否在 Trie 中,startsWith 方法用于查找是否存在以给定前缀开头的单词。 在 insert、search 和 startsWith 方法中,我们首先将指针 node 初始化为根节点。然后,对于单词中的每个字符,我们检查该字符的子节点是否存在。如果子节点不存在,则创建一个新的 TrieNode,并将其设置为该字符的子节点。最后,我们将指针 node 移动到该字符的子节点。在查找单词时,如果我们到达一个节点,其 isEndOfWord 变量为 true,则说明该单词在 Trie 中,如果到达的节点没有对应的子节点,则该单词不在 Trie 中。在查找以给定前缀开头的单词时,我们只需要检查 Trie 中是否存在以该前缀开头的单词即可。 注意,在这个示例中,我们假设输入的单词只包含小写字母。如果输入包含其他字符,我们需要对代码进行适当的修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值