n的阶乘末尾含0的个数

项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
欢迎大家star,留言,一起学习进步

本博主曾被问过这样一个问题:求n的阶乘中末尾含有多少个0。例如n=10,n!=3628800,那么n!末尾有两个0。

直接计算n!的值显然不合适,因为n!数值太大,很容易溢出。而且这种无脑的计算方式,显然不适合面试的时候装nbility拿高薪offer。

1解法一:分解质因数

本博主当时被问这个问题的时候的第一反应就是:要相乘产生0,那肯定是与5相乘的结果。对n!如果分解质因数的话,结果为0的个数只与2与5的个数有关,每一次2*5就能产生一个0。因为2的个数肯定要大于5的个数,所以只要关注5的个数就可以了。

2解法二:解法一的升级版

r e t = n / 5 + n / 5 2 + n / 5 3 + ⋯ ret = n/5 + n/5^2 + n/5^3 +\cdots ret=n/5+n/52+n/53+

思路讲完了,按照我们的惯例:
talk is cheap, show me the code:

#!/usr/bin/env python
#coding:utf-8

'''
@author: lei.wang
'''

def fact_first(n):
    ret = 0
    for i in xrange(n+1):
        j = i
        while (j%5 == 0 and j > 0): #注意要加上j>0,否则会死循环
            ret += 1
            j /= 5
            
    return ret

def fact_second(n):
    ret = 0
    while (n):
        ret += n/5
        n /= 5
        
    return ret

if __name__ == '__main__':
    ret_one = fact_first(100)
    print "ret_one is: ",ret_one
    ret_sec = fact_second(100)
    print "ret_sec is: ",ret_sec        

运行结果

ret_one is:  24
ret_sec is:  24
### 计算阶乘结果中末尾零的数量 计算阶乘结果中末尾零的数量是一个经典算法问题。这个问题的核心在于理解阶乘的结果中,末尾的零是由因子 `2` 和 `5` 的配对产生的。由于在任何阶乘中,因子 `2` 总是多于因子 `5`,因此只需要统计阶乘分解质因数后有多少个因子 `5` 即可。 #### 统计因子 `5` 的数量 为了得到阶乘结果中末尾零的数量,可以采用如下方法: 对于给定的一个正整数 \( n \),可以通过不断除以 `5` 来统计其倍数贡献的因子 `5` 数量。具体公式为: \[ \text{zero\_count} = \left\lfloor \frac{n}{5} \right\rfloor + \left\lfloor \frac{n}{5^2} \right\rfloor + \left\lfloor \frac{n}{5^3} \right\rfloor + \cdots \] 直到 \( 5^k > n \) 为止[^1]。 这种方法的时间复杂度为 \( O(\log_5(n)) \),非常高效。 #### 实现代码示例 (Python) 以下是基于上述公式的 Python 实现代码: ```python def count_trailing_zeros_in_factorial(n): zero_count = 0 i = 5 while n >= i: zero_count += n // i i *= 5 return zero_count # 测试函数 print(count_trailing_zeros_in_factorial(10)) # 输出应为 2 ``` 此代码通过循环逐步增加幂次的方式,有效地统计了所有可能的因子 `5` 贡献次数。 #### C# 实现代码示例 如果需要使用 C# 编程语言,则可以根据相同的逻辑编写对应的实现代码: ```csharp using System; class Program { static int CountTrailingZerosInFactorial(int n) { int zeroCount = 0; int i = 5; while (n / i >= 1) { zeroCount += n / i; i *= 5; } return zeroCount; } static void Main() { Console.WriteLine(CountTrailingZerosInFactorial(10)); // 输出应为 2 } } ``` 这段代码同样遵循了统计因子 `5` 的核心思路,并提供了完整的功能实现[^2]。 --- ### 结论 无论是 Java、C# 还是其他编程语言,解决该问题的关键都在于理解和应用统计因子 `5` 的方法。这种高效的解决方案能够快速得出任意大小输入下的阶乘结果中末尾零的数量。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值