项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
欢迎大家star,留言,一起学习进步
1.问题描述
最近项目中经常需要处理这样的case:
{"a", "b", "c", "d", "e", "f", "g"}
{"a,b,c","d,e","f,h", "k"}
上面两个集合,其中第一个集合全是单个id,第二个集合是多个id。现在需要将第一个集合中的id,按照第二个集合聚在一起。例如按上面两个集合,最终的输出为:
de
abc
f
2.解决方案
这还算是一个比较复杂的问题。经过思考,给出了如下的解决方案:
@Test
public void mergetest() {
String[] singlearr = {"a", "b", "c", "d", "e", "f", "g"};
String[] mularr = {"a,b,c","d,e","f,h", "k"};
//单个id转为set,多个id转为map
Set<String> singleset = new HashSet(Arrays.asList(singlearr));
Map<String, String> map = new HashMap();
//先将mularr里的key打散变为map
for(String mulids: mularr) {
String[] innerarr = mulids.split(",");
for(String innerid: innerarr) {
map.put(innerid, mulids);
}
}
Set<String> resultSet = new HashSet<>();
//遍历单个id
for(String singleid: singlearr) {
if(map.containsKey(singleid)) {
StringBuilder sb = new StringBuilder();
String mulids = map.get(singleid);
String[] idlist = mulids.split(",");
//查看多个id中的每一个是否在单个id的集合中
for(String eachId: idlist) {
if(singleset.contains(eachId)) {
sb.append(eachId);
}
}
resultSet.add(sb.toString());
}
}
for(String each: resultSet) {
System.out.println(each);
}
}
空间复杂度分析:
1.将原有的集合变为了一个HashSet与HashMap。假设原来集合的长度为n,则空间复杂度为O(n)。
2.有一个最终记录结果的HashSet。假设原来集合的长度为n,此部分的空间复杂度也为O(n)。
时间复杂度分析:
假设原来集合的长度为n,多id集合中,多id的平均长度为m,则时间复杂度为O(m*n)。