一、处理各类型数据的一些python packages
Generally, when you have to deal with image, text, audio or video data, you can use standard python packages that load data into a numpy array. Then you can convert this array into a torch.*Tensor.
- For images, packages such as Pillow, OpenCV are useful
- For audio, packages such as scipy and librosa
- For text, either raw Python or Cython based loading, or NLTK and SpaCy are useful
二、训练一个分类器的步骤
We will do the following steps in order:
1、Load and normalizing the CIFAR10 training and test datasets using torchvision(数据预处理)
2、Define a Convolution Neural Network
3、Define a loss function
4、Train the network on the training data
5、Test the network on the test data
# -*- coding: utf-8 -*-
import torch
import torchvision
import torchvision.transforms as transforms
########################################################################
# The output of torchvision datasets are PILImage images of range [0, 1].
# We transform them to Tensors of normalized range [-1, 1].
#transforms.Compose()将参数里的操作进行组合,并对数据依次执行这些操作
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
########################################################################
# Let us show some of the training images, for fun.
import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
########################################################################
# 2. Define a Convolution Neural Network
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Copy the neural network from the Neural Networks section before and modify it to
# take 3-channel images (instead of 1-channel images as it was defined).
#定义网络结构:层数以及每一层的结构、activitation function
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
########################################################################
# 3. Define a Loss function and optimizer
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# Let's use a Classification Cross-Entropy loss and SGD with momentum.
import torch.optim as optim
#计算loss函数,采用随机梯度下降法进行优化
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
########################################################################
# 4. Train the network
# ^^^^^^^^^^^^^^^^^^^^
#
# This is when things start to get interesting.
# We simply have to loop over our data iterator, and feed the inputs to the
# network and optimize.
#enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,第一个参数表示序列及其他支持迭代对象,第二个是下标起始位置
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
########################################################################
# 5. Test the network on the test data
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# We have trained the network for 2 passes over the training dataset.
# But we need to check if the network has learnt anything at all.
#
# We will check this by predicting the class label that the neural network
# outputs, and checking it against the ground-truth. If the prediction is
# correct, we add the sample to the list of correct predictions.
#
# Okay, first step. Let us display an image from the test set to get familiar.
dataiter = iter(testloader)
images, labels = dataiter.next()
# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
########################################################################
# Okay, now let us see what the neural network thinks these examples above are:
outputs = net(images)
########################################################################
# The outputs are energies for the 10 classes.
# Higher the energy for a class, the more the network
# thinks that the image is of the particular class.
# So, let's get the index of the highest energy:(测试的输出是概率,可能性最大的一个分类被输出)
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
for j in range(4)))
########################################################################
# The results seem pretty good.
#
# Let us look at how the network performs on the whole dataset.
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
########################################################################
# That looks waaay better than chance, which is 10% accuracy (randomly picking
# a class out of 10 classes).
# Seems like the network learnt something.
#
# Hmmm, what are the classes that performed well, and the classes that did
# not perform well:
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
#squeeze 函数:从数组的形状中删除单维度条目,即把shape中为1的维度去掉
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))
########################################################################
# Okay, so what next?
#
# How do we run these neural networks on the GPU?
#
# Training on GPU
# ----------------
# Just like how you transfer a Tensor on to the GPU, you transfer the neural
# net onto the GPU.
#
# Let's first define our device as the first visible cuda device if we have
# CUDA available:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Assume that we are on a CUDA machine, then this should print a CUDA device:
print(device)