PyTorch系列(一):1.快速入门

1. Tensor

from __future__ import print_function
import torch as t

x = t.Tensor(5,3) #构建5*3矩阵,只是分配了空间,未初始化
x = rand(5,3) #使用[0,1]均匀分布随机初始化二维数组
print(x.size()) #查看x的形状
# Print: torch.Size([5,3])

print(x.size()[0]) #查看x的行数
# torch.Size是tuple对象的子类,因此它支持tuple的所有操作,如x.size()[0]
print(x.size(1)) #查看x的列数

# 加法计算
y = t.rand(5,3)

#第一种加法
x + y 
#第二种加法
t.add(x,y) 
#第三种加法 指定加法结果的输出目标为result
result = t.Tensor(5,3) #预先分配空间
t.add(x,y,out=result) #输入到result

# 加法计算
# 第一种加法,不改变y的内容
y.add(x) #普通加法
#第二种加法
y.add_(x) #inplace加法,y改变了

Tensor和numpy的数组间的互操作非常容易且快速。Tensor不支持的操作,可以先转为numpy数组处理,之后再转回Tensor。

a = t.ones(5)
# Out: tensor([1., 1., 1., 1., 1.])

b = a.numpy() # Tensor -> Numpy
# Out: array([1., 1., 1., 1., 1.], dtype=float32)


import numpy as np
a = np.ones(5)
b = t.from_numpy(a) # Numpy -> Tensor

Tensor和numpy对象共享内存,所以他们之间的转换很快,而且几乎不会消耗资源。这就意味着,如果其中一个变了,另外一个也会随之改变。

b.add_(1) #以_结束的函数会修改自身的值
print(a)
print(b) # Tensor和Numpy共享内存
# Out: [2. 2. 2. 2. 2.]
# Out: tensor([2., 2., 2., 2., 2.])

Tensor可通过.cuda方法转为GPU的Tensor,从而享受GPU带来的加速运算。

2.Autograd:自动微分

autograd.Variable是Autograd中的核心类,它简单封装了Tensor,并支持几乎所有Tensor操作。Tensor在被封装为Variable之后,可以调用它的.backward实现反向传播,自动计算所有梯度。Variable的数据结构如图所示。

Variable主要包含三个属性:

  • data:保存variable所包含的tensor
  • grad:保存data对应的梯度,grad也是variable,而不是tensor,它与data形状一致。
  • grad_fn: 指向一个Function,记录tensor的操作历史,即它是什么操作的输出,用来构建计算图。如果某一个变量是由用户创建,则它为叶子节点,对应的grad_fn等于None。

Variable的构造函数需要传入tensor,同时有两个可选参数:

  • requires_grad (bool):是否需要对该variable进行求导
  • volatile (bool):意为”挥发“,设置为True,则构建在该variable之上的图都不会求导,专为推理阶段设计

Variable提供了大部分tensor支持的函数,但其不支持部分inplace函数,因这些函数会修改tensor自身,而在反向传播中,variable需要缓存原来的tensor来计算反向传播梯度。如果想要计算各个Variable的梯度,只需调用根节点variable的backward方法,autograd会自动沿着计算图反向传播,计算每一个叶子节点的梯度。

variable.backward(grad_variables=None, retain_graph=None, create_graph=None)主要有如下参数:

  • grad_variables:形状与variable一致,对于y.backward(),grad_variables相当于链式法则\frac{dz}{dx}=\frac{dz}{dy}\times \frac{dy}{dx}中的\frac{dz}{dx}。grad_variables也可以是tensor或序列。
  • retain_graph:反向传播需要缓存一些中间结果,反向传播之后,这些缓存就被清空,可通过指定这个参数不清空缓存,用来多次反向传播。
  • create_graph:对反向传播过程再次构建计算图,可通过backward of backward实现求高阶导数。

计算下面这个函数的导函数:y=x^2 \cdot e^x

它的导函数是:\frac{dy}{dx}=2x \cdot e^x + x^2 \cdot e^x

来看看autograd的计算结果与手动求导计算结果的误差。

def f(x): # 计算y
    y=x**2 * t.exp(x)
    return y
def gradf(x): #手动求导函数
    dx = 2*x*t.exp(x) + x**2*t.exp(x)
    return dx

x = Variable(t.randn(3,4), requires_grad = True)
y = f(x)
x
# Out: tensor([[ 0.2583, -0.7711,  0.4857,  0.6048],
#        [ 1.1318,  0.6371, -1.0199, -1.0027],
#        [-1.2990, -0.4510, -0.6040,  0.3999]], requires_grad=True)

y
# tensor([[0.0864, 0.2750, 0.3835, 0.6697],
#        [3.9729, 0.7677, 0.3751, 0.3689],
#        [0.4603, 0.1296, 0.1994, 0.2385]], grad_fn=<MulBackward0>)


y.backward(t.ones(y.size())) #grad_variables形状与y一致
x.grad
# Out: tensor([[ 0.7552, -0.4383,  1.9624,  2.8844],
#        [10.9933,  3.1775, -0.3605, -0.3669],
#        [-0.2484, -0.4450, -0.4609,  1.4315]])
# autograd的计算结果与利用公式手动计算的结果一致
gradf(x)
# Out: tensor([[ 0.7552, -0.4383,  1.9624,  2.8844],
#        [10.9933,  3.1775, -0.3605, -0.3669],
#        [-0.2484, -0.4450, -0.4609,  1.4315]], grad_fn=<AddBackward0>)

注意:grad在反向传播过程中是累加的,这意味着每次运行反向传播,梯度都会累加之前的梯度,所以反向传播之前需把梯度清零。

x.grad.data.zero_()

3.神经网络

torch.nn是专门为神经网络设计的模块化接口。nn构建于Autograd之上,可用来定义和运行神经网络。nn.Module是nn中最重要的类,可以把它看作一个网络的封装,包含网络各层定义及forward方法,调用forward(input)方法,可返回前向传播的结果。我们以最早的卷积神经网络LeNet为例,来看看如何用nn.Module实现。LeNet的网络结构如图所示。

3.1定义网络

定义网络时,需要继承nn.Module,并实现它的forward方法,把网络中具有可学习参数的层放在构造函数__init__中。如果某一层(如ReLU)不具有可学习参数,则既可以放在构造函数中,也可以不放。

import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
    def __init__(self):
        #nn.Module子类必须在构造函数中执行父类的构造函数
        #下式等价于nn.Module.__init__(self)
        super(Net,self).__init__()
        #卷积层'1'表示输入图片为单通道,'6'表示输出通道数,'5'表示卷积核为5*5
        self.conv1 = nn.Conv2d(1,6,5)
        #卷积层
        self.conv2 = nn.Conv2d(6,16,5)
        #仿射层/全连接层,y=Wx+b
        self.fc1 = nn.Linear(16*5*5,120)
        self.fc2 = nn.Linear(120,84)
        self.fc3 = nn.Linear(84,10)
        
    def forward(self,x):
        #卷积 -> 激活 -> 池化
        x = F.max_pool2d(F.relu(self.conv1(x)),(2,2))
        x = F.max_pool2d(F.relu(self.conv2(x)),2)
        # reshape, '-1'表示自适应
        x = x.view(x.size()[0], -1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
net = Net()
print(net)
# Out: Net(
#         (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
#         (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
#         (fc1): Linear(in_features=400, out_features=120, bias=True)
#         (fc2): Linear(in_features=120, out_features=84, bias=True)
#         (fc3): Linear(in_features=84, out_features=10, bias=True)
#         )

只要在nn.Module的子类中定义了forward函数,backward函数就会被自动实现(利用Autograd)。在forward函数中可使用任何Variable支持的函数。

网络的可学习参数通过net.parameters()返回,net.named_parameters可同时返回可学习的参数和名称。

params = list(net.parameters())
print(len(params))
# Out: 10
for name, parameters in net.named_parameters():
    print(name,':',parameters.size())
# Out: conv1.weight : torch.Size([6, 1, 5, 5])
#      conv1.bias : torch.Size([6])
#      conv2.weight : torch.Size([16, 6, 5, 5])
#      conv2.bias : torch.Size([16])
#      fc1.weight : torch.Size([120, 400])
#      fc1.bias : torch.Size([120])
#      fc2.weight : torch.Size([84, 120])
#      fc2.bias : torch.Size([84])
#      fc3.weight : torch.Size([10, 84])
#      fc3.bias : torch.Size([10])

forward函数的输入和输出都是Variable,只有Variable才具有自动求导功能,Tensor是没有的,所以在输入时,需要把Tensor封装为Variable。

input = Variable(t.randn((1,1,32,32),dtype=t.float))
# input = t.rand((1, 1, 32, 32), dtype=t.float)

out = net(input)
out.size()
# Out: torch.Size([1,10])
net.zero_grad() #所有参数的梯度清零
# out.backward(Variable(t.ones(1,10))) #反向传播

注意:torch.nn只支持mini-batches,不支持一次只输入一个样本,即一次必须是一个batch。如果只想输入一个样本,则用input.unsqueeze(0)将batch_size设为1。例如,nn.Conv2d输入必须是4维的,形如nSamples*nChannels*Height*Width。可将nSample设为1,即1*nChannels*Height*Width.

# 比如,只有一张输入图片,也需要变成 N x C x H x W 的形式:    
input_image = torch.FloatTensor(1, 28, 28)   
input_image = input_image.unsqueeze(0)   # 1 x 1 x 28 x 28

3.2 损失函数

nn实现了神经网络中大多数的损失函数,例如nn.MSELoss用来计算均方误差,nn.CrossEntropyLoss用来计算交叉熵损失。

output = net(input)
# target = Variable(t.arange(0,10))
target = t.ones((1, 10), dtype=t.float)
criterion = nn.MSELoss()
loss = criterion(output, target)

如果对loss进行反向传播溯源(使用grad_fn属性),可看到它的计算图如下:

当调用loss.backward()时,该图会动态生成并自动微分,也会自动计算途中参数(Parameters)导数。

#运行.backward,观察调用之前和调用之后的grad
net.zero_grad() #把net中所有可学习参数的梯度清零
print('反向传播之前conv1.bias的梯度')
print(net.conv1.bias.grad)
loss.backward()
print('反向传播之后conv1.bias的梯度')
print(net.conv1.bias.grad)
# Out: 反向传播之前conv1.bias的梯度
#      tensor([0., 0., 0., 0., 0., 0.])
#      反向传播之后conv1.bias的梯度
#      tensor([-0.0158, -0.0082,  0.0000,  0.0000, -0.0101, -0.0071])

3.3优化器

在反向传播计算完所有参数的梯度后,还需要使用优化方法更新网络的权重和参数。例如,随机梯度下降法(SGD)的更新策略如下: weight = weight -learning_rate * gradient

手动实现如下:

learning_rate = 0.01
for f in net.parameters():
    f.data.sub_(f.grad.data * learning_rate) # inplace减法

torch.optim中实现了深度学习中绝大多数的优化方法,例如RMSProp,Adam,SGD等

import torch.optim as optim
#新建一个优化器,指定要调整的参数和学习率
optimizer = optim.SGD(net.parameters(), lr= 0.01)

#在训练过程中,先梯度清零(与net.zero_grad()效果一样)
optimizer.zero_grad()
#计算损失
output = net(input)
loss = criterion(output,target)
#反向传播
loss.backward()
#更新参数
optimizer.step()

3.4数据加载与预处理

torchvision实现了常用的图像数据加载功能,例如Imagenet,CIFAR10,MNIST等,以及常用的数据转换操作。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《深度学习pytorch极简入门》是一本PDF教程,旨在帮助初学者快速入门PyTorch深度学习框架。该教程以简洁清晰的语言介绍了PyTorch的基本概念和使用方法,帮助读者了解深度学习的基本原理和PyTorch框架的核心功能。 教程的内容主要分为四个部分。首先,它介绍了深度学习的基本概念和原理,例如神经网络、前向传播和反向传播算法等。其次,教程详细介绍了PyTorch框架的安装和环境搭建,包括如何安装PyTorch和相关的依赖库。然后,教程演示了如何使用PyTorch进行数据加载和预处理,以及如何构建和训练一个简单的神经网络模型。最后,教程还介绍了如何使用PyTorch进行模型评估和保存。 这本教程的特点在于简明扼要。它用简单易懂的语言解释了复杂的概念和原理,避免了过多的数学推导和技术术语的使用。此外,教程通过一系列的例子和实践任务,让读者可以亲自动手实践,并逐步建立起对PyTorch的理解和掌握能力。 总结来说,《深度学习pytorch极简入门》是一本适合初学者入门PyTorch教程。它以简洁明了的方式介绍了PyTorch的基本概念和使用方法,并通过实践任务帮助读者逐步掌握深度学习和PyTorch框架的基本原理和技巧。无论是对于想要了解深度学习的初学者还是对于已经熟悉其他深度学习框架的人来说,这本教程都是一个不错的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值