整理自浙江大学机器学习Mook
Introduction
1.机器学习的定义
假设用P来评估计算机程序在某任务类T上的性能,若一个程序通过利用经验E在T中任务上获得了性能改善,则我们就说关于T和P,该程序对E进行了学习。
2. 机器学习的分类
-
supervised learning
- traditional supervised learning
- support vector machine,
- neural networks,
- deep neural network
- unsupervised learning(no labels)
- clustering(聚类)
- EM (expectation maximization algorithm)
- principle component analysis
- semi-supervised learning
Also we can classify supervised learning into classification and regression
- traditional supervised learning
-
reinforcement learning(need to interact with the environment)
3. 机器学习的算法过程
- feature extraction(特征提取)
- feature selection
- construct feature space (the dimension depends on the number of the critical features) and use algorithm
4. 没有免费午餐(no free lunch theorem)
该定理的结论是,由于对所有可能函数的相互补偿,最优化算法的性能是等价的。即没有最好的算法
在设计机器学习算法有一个假设:在特征空间距离接近的样本,他们属于同一个类别的概率会更高。
如果不对特征空间先验分布的有假设,那么所有的算法表现都一样