机器学习


整理自浙江大学机器学习Mook

Introduction

1.机器学习的定义

假设用P来评估计算机程序在某任务类T上的性能,若一个程序通过利用经验E在T中任务上获得了性能改善,则我们就说关于T和P,该程序对E进行了学习。

2. 机器学习的分类

  • supervised learning

    • traditional supervised learning
      • support vector machine,
      • neural networks,
      • deep neural network
    • unsupervised learning(no labels)
      • clustering(聚类)
      • EM (expectation maximization algorithm)
      • principle component analysis
    • semi-supervised learning
      Also we can classify supervised learning into classification and regression
  • reinforcement learning(need to interact with the environment)

3. 机器学习的算法过程

  • feature extraction(特征提取)
  • feature selection
  • construct feature space (the dimension depends on the number of the critical features) and use algorithm

4. 没有免费午餐(no free lunch theorem)

该定理的结论是,由于对所有可能函数的相互补偿,最优化算法的性能是等价的。即没有最好的算法
在设计机器学习算法有一个假设:在特征空间距离接近的样本,他们属于同一个类别的概率会更高。
如果不对特征空间先验分布的有假设,那么所有的算法表现都一样

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值