确定部分分式中待定系数的留数方法

本文介绍了如何通过留数计算确定有理真分式部分分式的待定系数。在Q(x)的根为单根或重根的情况下,利用留数公式可以求解这些系数。这一方法不仅适用于实数根,也适用于复数根。通过将函数视为复变函数并应用复变函数的积分和留数理论,可以有效地将有理真分式化为部分分式和形式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

确定部分分式中待定系数的留数方法

在将有理真分式化为确定部分分式和的过程中,可以使用留数对部分分式的系数进行求解。

这里介绍一篇论文,证明可以在论文中查看
注:链接已经失效,请大家自行到知网进行检索
在这里插入图片描述

设有理真分式
f ( x ) = P m ( x ) Q n ( x ) f(x)=\frac{P_m(x)}{Q_n(x)} f(x)=Qn(x)Pm(x)
其中,
m < n m\lt n m<n
分为以下两种 情况进行讨论

a. Q(x)=0的根均为单根

在这里插入图片描述.在这里插入图片描述
即,此时要确定的系数就是f(x)在对应极点上的留数

b.根中有重根

在这里插入图片描述
单根的确定方法同a情况中的确定方法,对于重根,设x1 为r重根,考虑Bk
B k = R e s [ ( x − x 1 ) k − 1 f ( x ) , x 1 ] 此时 x 1 为 ( x − x 1 ) k − 1 f ( x ) 的 r − ( k − 1 ) = r − k + 1 级极点 B_k=Res[(x-x_1)^{k-1}f(x),x_1 ] \\ 此时x_1为(x-x_1)^{k-1}f(x)的r-(k-1)=r-k+1级极点 Bk=Res[(xx1)k1f(x),x1]此时x1(xx1)k1f(x)r(k1)=rk+1级极点
利用留数极点计算公式 得,
B k = 1 ( r − k ) ! lim ⁡ x → x 1 [ ( x − x 1 ) r f ( x ) ] ( r − k ) = 1 ( r − k ) ! [ ( x − x 1 ) r f ( x ) ] ( r − k ) ∣ x = x 1 B_k=\frac{1}{(r-k)!}\lim_{x \to x_1} [(x-x_1)^{r}f(x)]^{(r-k)} \\{\color{Blue}=\frac{1}{(r-k)!}[(x-x_1)^rf(x)]^{(r-k)}|_{x=x_1} } Bk=(rk)!1xx1lim[(xx1)rf(x)](rk)=(rk)!1[(xx1)rf(x)](rk)x=x1

注:上述结论虽然是在实根条件下得出的,但经过博主研究,上述结论在根为复数单根,以及复数重根的条件下同样成立。

c.总结——基本思想

要将有理真分式 f ( x ) = P m ( x ) Q n ( x ) 在实数范围内化为部分分式和的形式,可将f ( x ) 视为特殊的复变函数f ( z ) 先将f ( z ) 化为部分分式和的形式 , 根据复变函数的积分和留数理论可得 其待定系数为f ( z ) 在极点处的留数 要将有理真分式\\ f(x)=\frac{P_m(x)}{Q_n(x)} \\在实数范围内化为部分分式和的形式,可将f(x)视为特殊的复变函数f(z) \\先将f(z)化为部分分式和的形式,根据复变函数的积分和留数理论可得 \\其待定系数为f(z)在极点处的留数 要将有理真分式f(x)=Qn(x)Pm(x)在实数范围内化为部分分式和的形式,可将f(x)视为特殊的复变函数f(z)先将f(z)化为部分分式和的形式,根据复变函数的积分和留数理论可得其待定系数为f(z)在极点处的留数

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值