P4783 【模板】矩阵求逆 高斯-约旦消元 求矩阵的逆

本文介绍了如何通过高斯-约旦消元法来求解矩阵的逆,通过实例展示了具体的计算过程,并指出只需输入右块矩阵E即可完成求逆。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以上是我们算法的依据

下面的是例题。

我们用高斯-约旦消元把分块矩阵: A|E  中的A初等变化为E ,  整体矩阵变为: E|A^ {-1}

输入右块矩阵即可。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int M = 400+7;
const int mod =1e9+7;
int a[M][M<<1];
ll qpow(ll a,ll b)
{
	ll ans=1;
	while(b)
	{
		if(b&1)ans=ans*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	return ans;
}
//返回自由元个数,及无穷解个数 
bool Gauss(int n,int m)//对矩阵a高斯消元得到(E|C) C为等式右边的列矩阵 
{
	int row;//当前处理的行
	int col;//当前处理的列 
  	for(row=1,col=1;row<=n&&co
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值