辐射度量学的一些概念

  • Radiant flux

    Radiant Energy:总能量,单位 J J J 焦耳。
    Radiant Flux:单位时间内的能量,单位是 W W W 瓦特,在光学中,有自己的单位 l m lm lm 流明。
    Flux也可以定义为,有一个平面,在单位时间内通过这个平面的光子数量。
    Φ ≡ d Q d t [ W = W a t t ] [ l m = l u m e n ] \Phi\equiv\frac{dQ}{dt}[W=Watt][lm=lumen] ΦdtdQ[W=Watt][lm=lumen]
  • Radiant Intensity

    Radiant Intensity:即一个点光源的单位立体角内的Radiant Flux。
    单位是 c d cd cd 。这个单位是标准单位制上的单位。
    I ( ω ) ≡ d Φ d ω I(\omega)\equiv\frac{d\Phi}{d\omega} I(ω)dωdΦ
    [ W s r ] [ l m s r = c d = c a n d e l a ] \left[\frac{W}{sr}\right]\left[\frac{lm}{sr}=cd=candela\right] [srW][srlm=cd=candela]
    • 立体角
      角度:用弧度 l l l 除以 园的半径 r r r.
      θ = l r \theta=\frac{l}{r} θ=rl
      一个圆的角度是 2 π 2\pi 2π
      立体角:与角度类似,用球上的一个面积除以球的半径的平方。
      Ω = A r 2 \Omega=\frac{A}{r^2} Ω=r2A
      球的立体角是 4 π 4\pi 4π
      单位立体角:
      d A = ( r   d θ ) ( r   s i n θ   d ϕ ) = r 2 s i n θ   d θ   d ϕ (单位面积) dA=(r\ d\theta)(r\ sin\theta\ d\phi)=r^2sin\theta\ d\theta\ d\phi \tag{单位面积} dA=(r dθ)(r sinθ dϕ)=r2sinθ dθ dϕ()
      d ω = d A r 2 = s i n θ   d θ   d ϕ (单位立体角) d\omega=\frac{dA}{r^2}=sin\theta\ d\theta\ d\phi \tag{单位立体角} dω=r2dA=sinθ dθ dϕ()
      对于球来说, Ω = ∫ S 2 d ω = ∫ 0 2 π ∫ 0 π s i n θ   d θ   d ϕ = 4 π \Omega=\int_{S^2}d\omega=\int^{2\pi}_0\int^\pi_0sin\theta\ d\theta\ d\phi=4\pi Ω=S2dω=02π0πsinθ dθ dϕ=4π
      从立体角的定义可延申得到上面的 Radiant Flux 为
      Φ = ∫ S 2 I   d ω = 4 π I \Phi=\int_{S^2}I\ d\omega=4\pi I Φ=S2I dω=4πI
      如果一个点光源均匀的向四周辐射能量的话,那么Radiant Intensity 为 I = Φ 4 π I=\frac{\Phi}{4\pi} I=4πΦ
  • Irradiance

    一个单位投影面积上收到的能量(Radiance Intensity)。
    E ( x ) ≡ d Φ ( x ) d A E(x)\equiv\frac{d\Phi(x)}{dA} E(x)dAdΦ(x)
    单位 [ W m 2 ] [ l m m 2 = l u x ] \left[\frac{W}{m^2}\right]\left[\frac{lm}{m^2}=lux\right] [m2W][m2lm=lux]
    这里的面必须是垂直于光线方向的,如果不垂直光线方向的话,那么,接受到的能量需要乘以光线方向和法线方向的夹角的余弦,即 E = Φ A c o s θ E=\frac{\Phi}{A}cos\theta E=AΦcosθ其中 c o s θ = l ^ ⋅ n ^ cos\theta=\hat{l}\cdot\hat{n} cosθ=l^n^
  • Radiance

    用来描述光线的属性,是单位立体角和单位投影面积上的能量(Radiance Intensity)。
    L ( p , ω ) ≡ d 2 Φ ( p , ω ) d ω   d A   c o s θ L(p,\omega)\equiv\frac{d^2\Phi(p,\omega)}{d\omega\ dA\ cos\theta} L(p,ω)dω dA cosθd2Φ(p,ω)其中 θ \theta θ 是投影平面的法线与光线的夹角。
    这里的单位是 [ W s r   m 2 ] [ c d m 2 = l m s r   m 2 = n i t ] \left[\frac{W}{sr\ m^2}\right]\left[\frac{cd}{m^2}=\frac{lm}{sr\ m^2}=nit\right] [sr m2W][m2cd=sr m2lm=nit]
    由上面的 Intensity 和 Irradiance 的定义可得,Radiance 是Intensity 在单位投影面积上接受的能量,也可以是 Irradiance 在单位立体角上的能量。
    由此可得 L ( p , ω ) = d E ( p ) d ω   c o s θ L(p,\omega)=\frac{dE(p)}{d\omega\ cos\theta} L(p,ω)=dω cosθdE(p)
    L ( p , ω ) = d I ( p , ω ) d A   c o s θ L(p,\omega)=\frac{dI(p,\omega)}{dA\ cos\theta} L(p,ω)=dA cosθdI(p,ω)
    Irradiance 也可以理解为 Radiance 在方向上的积分, d E ( p , ω ) = L i ( p , ω )   c o s θ   d ω dE(p,\omega)=L_i(p,\omega)\ cos\theta\ d\omega dE(p,ω)=Li(p,ω) cosθ dω
    例如在单位半球的球心位置, E ( p ) = ∫ H 2 L i ( p , ω )   c o s θ   d ω E(p)=\int_{H^2}L_i(p,\omega)\ cos\theta\ d\omega E(p)=H2Li(p,ω) cosθ dω
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值