神经网络

神经元:

在神经网络的模型中,神经元可以表示如下

神经元的左边是其输入,包括变量x1、x2、x3与常数项1,

右边是神经元的输出

 

神经元的输出函数被称为激活函数(activation function),输出值被称为激活值(activation value)。

激活函数有很多种,其中最简单的莫过于sigmoid函数。

除非特别声明,否则博客里提及的激活函数均为sigmoid


 

神经网络:

多个神经元首尾相连连接成神经网络(Neural Network),可以表示如下:

 

尽管生物体中神经云之间的连接会更加复杂,

在常用的模型中,神经元的连接要遵循一定规则,

简单地来说就是要分层:上一层神经元的输出作为下一层的输入,

两层之间单向传递,没有反馈

同层之间的神经元没有交流。

 

下面我们来描述一下这个模型 :

神经网络 \textstyle {n}_l 来表示网络的层数

其中最左边的叫做出入层,最右边的称为输出层,中间的层被称为隐藏层

隐藏层的借点成为隐藏节点。隐藏层的数量为网络的“深度”

 

我们将第 \textstyle l 层记为 \textstyle L_l ,于是 \textstyle L_1 是输入层,输出层是 \textstyle L_{n_l} 

 

本例神经网络有参数 \textstyle (W,b) = (W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)}) ,

其中 , \textstyle W^{(l)}_{ij} (下面的式子中用到)是第 \textstyle l 层第 \textstyle j 单元与第 \textstyle l+1 层第 \textstyle i 单元之间的联接参数(权重,注意标号顺序), 

\textstyle b^{(l)}_i 是第 \textstyle l+1 层第 \textstyle i 单元的偏置项。

因此在本例中, \textstyle W^{(1)} \in \Re^{3\times 3} , \textstyle W^{(2)} \in \Re^{1\times 3} 。

注意,即偏置单元没有输入

 

 \textstyle s_l 表示第 \textstyle l 层的节点数,偏置单元不计在内


神经网络的计算:

用 \textstyle a^{(l)}_i 表示第 \textstyle l 层第 \textstyle i 单元的激活值(输出值),当 \textstyle l=1 时, \textstyle a^{(1)}_i = x_i

\textstyle z^{(l)}_i 表示第 \textstyle l 层第 \textstyle i 单元输入加权和(包括偏置单元)

于是,\textstyle h_{W,b}(x)  可以按如下方法计算

 \begin{align}a_1^{(2)} &= f(W_{11}^{(1)}x_1 + W_{12}^{(1)} x_2 + W_{13}^{(1)} x_3 + b_1^{(1)})  \\a_2^{(2)} &= f(W_{21}^{(1)}x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + b_2^{(1)})  \\a_3^{(2)} &= f(W_{31}^{(1)}x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 + b_3^{(1)})  \\h_{W,b}(x) &= a_1^{(3)} =  f(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)} a_2^{(2)} + W_{13}^{(2)} a_3^{(2)} + b_1^{(2)}) \end{align}

 

 

计算过程可以用向量运算简化

这种由输入求输出,从左向右计算的算法,叫做前向传播算法

于是乎这种神经网络也叫做前馈神经网络


反向传播算法(Back Propagation):

 

引言:

在逻辑回归中,我们使用梯度下降法求参数方程的最优解。

这种方法在神经网络中并不能直接使用,

因为神经网络有多层参数(最少两层),(?为何不能)

这就要求对梯度下降法做少许改进。

 


 

实现过程:

 一、正向传播

首先,同逻辑回归,我们求出神经网络输出与实际值的“误差”——COST:

 

 这里先使用欧式距离而不是索夫曼函数作为输出的cost:

\begin{align}J(W,b; x,y) = \frac{1}{2} \left\| h_{W,b}(x) - y \right\|^2.\end{align}

 

展开之后:

 \begin{align}J(W,b)&= \left[ \frac{1}{m} \sum_{i=1}^m J(W,b;x^{(i)},y^{(i)}) \right]                       + \frac{\lambda}{2} \sum_{l=1}^{n_l-1} \; \sum_{i=1}^{s_l} \; \sum_{j=1}^{s_{l+1}} \left( W^{(l)}_{ji} \right)^2 \\&= \left[ \frac{1}{m} \sum_{i=1}^m \left( \frac{1}{2} \left\| h_{W,b}(x^{(i)}) - y^{(i)} \right\|^2 \right) \right]                       + \frac{\lambda}{2} \sum_{l=1}^{n_l-1} \; \sum_{i=1}^{s_l} \; \sum_{j=1}^{s_{l+1}} \left( W^{(l)}_{ji} \right)^2\end{align}

(注意右边的权重衰减项,既规则化)

 

 二、反向传播

对于第 \textstyle n_l 层(输出层)的每个输出单元 \textstyle i,我们根据以下公式计算残差

\begin{align}\delta^{(n_l)}_i= \frac{\partial}{\partial z^{(n_l)}_i} \;\;        \frac{1}{2} \left\|y - h_{W,b}(x)\right\|^2 = - (y_i - a^{(n_l)}_i) \cdot f'(z^{(n_l)}_i)\end{align}

对 \textstyle l = n_l-1, n_l-2, n_l-3, \ldots, 2 的各个层,第 \textstyle l 层的第 \textstyle i 个节点的残差计算方法如下

 \delta^{(l)}_i = \left( \sum_{j=1}^{s_{l+1}} W^{(l)}_{ji} \delta^{(l+1)}_j \right) f'(z^{(l)}_i)

这里:

\textstyle f'(z^{(l)}_i) = a^{(l)}_i (1- a^{(l)}_i)

这里相当于把本层节点的残差按照权重“投影”到上一层残差的节点上(“反向传播”就是这个意思)

 

在计算出各节点的残差之后,参数的偏导如下计算:

 \begin{align}\frac{\partial}{\partial W_{ij}^{(l)}} J(W,b; x, y) &= a^{(l)}_j \delta_i^{(l+1)} \\\frac{\partial}{\partial b_{i}^{(l)}} J(W,b; x, y) &= \delta_i^{(l+1)}.\end{align}

 

然后就可以梯度下降去了!

 

梯度下降过程:

1、进行前馈计算,求的所有节点的输出,求得cost;

2、进行反向传播计算,求的所有节点残差(第nl ~ 第2层)

3、利用公式求得cost对参数的偏导

4、更新偏导。

5、重复1~4知道cost差距小于预设值或重复次数大于预设值

(这里以上只讲实现方法,省略所有证明。相关证明贴于最后。)


 

随机初始化( Random Initialization):

在进行第一次前馈算法之前,神经网络参数的值是多少呢?

全零初始化?这是不可以的!

如果选择相同的参数进行初始化,

隐藏节点的出入必定相同(自己推推,更不用说输出了)。

为了使得对称失效,我们对神经网络的参数进行随机初始化,

既采用接近零的初始值进行初始化

这个过程可以用matlab产生随机矩阵的功能来实现。

初始化之后,让我们一起下降吧!


 

用到的证明(残差的计算):

1、

 \begin{align}\delta^{(n_l)}_i &= \frac{\partial}{\partial z^{n_l}_i}J(W,b;x,y) = \frac{\partial}{\partial z^{n_l}_i}\frac{1}{2} \left\|y - h_{W,b}(x)\right\|^2 \\ &= \frac{\partial}{\partial z^{n_l}_i}\frac{1}{2} \sum_{j=1}^{S_{n_l}} (y_j-a_j^{(n_l)})^2 = \frac{\partial}{\partial z^{n_l}_i}\frac{1}{2} \sum_{j=1}^{S_{n_l}} (y_j-f(z_j^{(n_l)}))^2 \\ &= - (y_i - f(z_i^{(n_l)})) \cdot f'(z^{(n_l)}_i) = - (y_i - a^{(n_l)}_i) \cdot f'(z^{(n_l)}_i)\end{align}

2、

 \begin{align}\delta^{(n_l-1)}_i &=\frac{\partial}{\partial z^{n_l-1}_i}J(W,b;x,y) = \frac{\partial}{\partial z^{n_l-1}_i}\frac{1}{2} \left\|y - h_{W,b}(x)\right\|^2  = \frac{\partial}{\partial z^{n_l-1}_i}\frac{1}{2} \sum_{j=1}^{S_{n_l}}(y_j-a_j^{(n_l)})^2 \\&= \frac{1}{2} \sum_{j=1}^{S_{n_l}}\frac{\partial}{\partial z^{n_l-1}_i}(y_j-a_j^{(n_l)})^2 = \frac{1}{2} \sum_{j=1}^{S_{n_l}}\frac{\partial}{\partial z^{n_l-1}_i}(y_j-f(z_j^{(n_l)}))^2 \\&= \sum_{j=1}^{S_{n_l}}-(y_j-f(z_j^{(n_l)})) \cdot \frac{\partial}{\partial z_i^{(n_l-1)}}f(z_j^{(n_l)}) = \sum_{j=1}^{S_{n_l}}-(y_j-f(z_j^{(n_l)})) \cdot  f'(z_j^{(n_l)}) \cdot \frac{\partial z_j^{(n_l)}}{\partial z_i^{(n_l-1)}} \\&= \sum_{j=1}^{S_{n_l}} \delta_j^{(n_l)} \cdot \frac{\partial z_j^{(n_l)}}{\partial z_i^{n_l-1}} = \sum_{j=1}^{S_{n_l}} \left(\delta_j^{(n_l)} \cdot \frac{\partial}{\partial z_i^{n_l-1}}\sum_{k=1}^{S_{n_l-1}}f(z_k^{n_l-1}) \cdot W_{jk}^{n_l-1}\right) \\&= \sum_{j=1}^{S_{n_l}} \delta_j^{(n_l)} \cdot  W_{ji}^{n_l-1} \cdot f'(z_i^{n_l-1}) = \left(\sum_{j=1}^{S_{n_l}}W_{ji}^{n_l-1}\delta_j^{(n_l)}\right)f'(z_i^{n_l-1})\end{align}

 

 

 

 


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值