问题描述
牛牛定义排序子序列为一个数组中一段连续的子序列, 并且这段子序列是非递增或者非递减排序的。牛牛有一
个长度为n的整数数组A, 他现在有一个任务是把数组A分为若干段排序子序列, 牛牛想知道他最少可以把这个数
组分为几段排序子序列.
如样例所示, 牛牛可以把数组A划分为[1, 2, 3]和[2, 2, 1]两个排序子序列, 至少需要划分为2个排序子序列, 所以输出2
输入输出
输入的第一行为一个正整数n(1 ≤ n ≤ 10 ^ 5)
第二行包括n个整数A_i(1 ≤ A_i ≤ 10 ^ 9), 表示数组A的每个数字。
输出描述:
输出一个整数表示牛牛可以将A最少划分为多少段排序子序列
示例1 :
输入
6
1 2 3 2 2 1
输出
2
解题思路
遍历整个数组,当a[i] 与 a[i+1] 的关系发生改变的时候count++, 注意最后一个位置的数字如果是单独的数字,
例如: 1 2 3 2 1 3 这样的话,给最后一个数字的后一个位置置为0就可以帮助判断。
代码
#include<iostream>
#include<vector>
using namespace std;
int main()
{
int n;
cin >> n;
// 注意这里多给了一个值,是处理越界的情况的比较
vector<int> a;
a.resize(n + 1);
//令边界的下一个为0
a[n] = 0;
//读入数组
int i = 0;
for (i = 0; i < n; ++i)
cin >> a[i];
i = 0;
int count = 0;
while (i < n)
{
// 非递减子序列
if (a[i] < a[i + 1])
{
while (i < n && a[i] <= a[i + 1])
i++;
count++;
i++;
}
else if (a[i] == a[i + 1])
{
i++;
}
else // 非递增子序列
{
while (i < n && a[i] >= a[i + 1])
i++;
count++;
i++;
}
}
cout << count << endl;
return 0;
}