R语言-配对T检验-配对连线图(Paried_line plots),也称为前后配对图(Before-after plots)

本文介绍了如何使用R语言进行配对T检验,并展示了创建配对连线图(前后配对图)的方法,通过这种图表可以直观地比较数据前后的变化情况。
摘要由CSDN通过智能技术生成

在这里插入图片描述

rm(list=ls())
library(ggstatsplot)
#remove.packages(c("vctrs", "dplyr"))
#install.packages("dplyr")
library(ggplot2)
library(RColorBrewer
R语言中,`ordiplot()`函数通常用于执行多元 correspondence analysis (OMCA) 或 ordination plots,类似于多元主成分分析(PLS-DA),它是偏最小二乘判别分析(Partial Least Squares Discriminant Analysis)的版本。对于PLS-DA后的置换检验,我们一般会检查得分中的显著差异点,这通常涉及到统计软件如PerMANOVA(基于距离矩阵的方差分析)。 以下是一个简单的例子,展示了如何使用`plspm`包来进行PLS-DA分析并绘制得分,以及使用`vegan`包进行替换检验: ```R # 首先确保已安装所需包 install.packages("plspm") # 如果未安装 install.packages("vegan") # 加载数据集(假设你的数据是data) data <- read.csv("your_data.csv") # 使用plspm进行PLS-DA模型训练 library(plspm) model <- opls(data[, -1], data[,1]) # 假设第一列是类别变量 # 计算得分并查看结果 results <- resid(model) # 可视化得分 library(ggbiplot) ggbiplot(results, type = "p", groups = data[,1]) # 进行置换检验 library(vegan) permdisp(results$loadings, nperm = 999) # 对加载向量进行替换检验,默认999次随机模拟 # 检查结果,通常会返回一个P值,小于0.05可能表示有显著差异 ``` 注意,以上代码示例假设你有一个名为"data.csv"的数据文件,并且已经准备好了分类变量作为因变量。`resid()`函数获取残差矩阵,`ggbiplot()`用于创建得分,而`permdisp()`则用于置换检验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MRI_lab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值