最小多项式
方阵A的次数最低、且首一的零化多项式称为A的最小多项式。
最小多项式的一般形式
算这个没什么办法,只能暴力计算,从m=1开始算,把A带进去是不是等0。
Jordan块的最小多项式是他的特征多项式,阶数不能再降了。
例题
A
1
A_1
A1是一个Jordan块,他的最小多项式不将阶。
这时候
A
2
A_2
A2的最小多项式只有两种情况,从1阶开始试。然后取最小共倍数,构成原来矩阵的最小多项式。
有了最小多项式就可以简化方阵多项式的计算。
定理:相似矩阵有相似的最小多项式
N阶方阵可对角化的充要条件是最小多项式无重根。
最小多项式与Jordan的关系
性质
上面的
n
i
n_i
ni是代数重数,是子Jordan的阶数。
子Jordan矩阵是由Jordan块构成,Jordan块的个数是由
λ
i
\lambda_i
λi的几何重数构成
k
i
k_i
ki
这些Jordan块的阶和最小多项式有关,最小多项式的幂就是Jordan块的阶。
例题
代数重数就是特征多项式的幂,阶数就是总的幂数之和。
根据最小多项式得出子Jordan块的最高阶数
简化方阵多项式的计算
1、相似化简成对角阵
2、通过零化多项式对多项式降阶